o @

DEPARTMENT OF AEROSPACE ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

PREDICTION AND CONTROL OF VORTEX-DOMINATED
AND VORTEX-WAKE FLOWS

By

Osama Kandil, Principal Investigator

Progress Report
For the period December 1, 1992 to November 30, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-1-994

Dr. Chen-Huei Liu, Technical Monitor
FLDMD-Theoretical Flow Physics Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

December 1993






PREDICTION AND CONTROL OF VORTEX-
DOMINATED AND VORTEX-WAKE FLOWS

Osama A. Kandil’
Aerospace Engineering Department

Accomplishments (December 1, 1992-Novemer 30, 1993)

This section documents the accomplishments which have been achieved in the present year
covering the period from December 1, 1992 until November 30, 1993. These accomplishments
include publications, national and international presentations, NASA presentations and the

research group supported under this grant.

. Conference Papers, Proceedings and Journal Publications:

. Kandil, O. A., Kandil, H. A. and Liu, C. H., “Shock-Vortex Interaction Over a 65 Degree
Delta Wing in Transonic Flows,” AIAA 93-2973, AIAA 24th Fluid Dynamics Conference,
Orlando, Florida, July 5-7, 1993.

. Kandil, O. A., Sharaf, H. H. and Liu, C. H., “Active Control of Asymmetric Conical Flow
Using Spinning and Rotatory Oscillation,” AIAA 93-2958, AIAA 24th Fluid Dynamics
Conference, Orlando, Florida, July 5-7, 1993.

. Kandil, O. A., Kandil, H. A, and Liu, C. H., “Three-Dimensional Supersonic Vortex
Breakdown,” AIAA 93-0526, AIAA 31st Aerospace Scienes Meeting, Reno, Nevada, January
1993.

. Kandil, H. A., Kandil, O. A. and Liu, C. H., “Supersonic Vortex Breakdown Over a Delta
Wing in Transonic Flow,” AIAA-93-3472-CP, AIAA 1 1th Applied Aerodynamics Conference,
Monterey, CA, August 1993, pp. 582-596.

. Kandil, O. A., “Active Control of Vortical Flows Around Wings and Bodies Using CFD,” III
PAN American Congress of Applied Mechanics, Sdo Paulo, Brazil, Proceedings pp. 29-32,
January 4-8, 1993 (Invited).

. Liu, C. H., Kandil, O. A. and Kandil, H. A., “Numerical Simulation and Physical Aspects
of Supersonic Vortex Breakdown,” Journal of Computers and Fluids, Vol. 22, No. 4/5, pp.
607-622, May 1993.

* Professor, Eminent Scholar and Chairman






2

. Liu, C. H, Wong, T. C. and Kandil, O. A., “Prediction of Asymmetric Vortical Flows
Around Slender Bodies Using Navier-Stokes Equations,” Japanese Journal of Fluid Dynamics
Research, Vol. 10, pp. 409450, December 1992.

. Kandil, O. A. and Liu, C. H., “Three-Dimensional Asymmetric Flows Around Cones,” NAS
Technical Summaries,” December 1992, p. 73.

II. Ph.D. Dissertation Produced:

“Navier-Stokes Simulation of Quasi-Axisymmetric and Three-Dimensional Supersonic Vortex
Breakdown” by H. A. Kandil, Old Dominion University, May 1993. Most of the work is
supported under this grant, and-part of the work is supported under a grant from AFOSR,
Bolling AFB, D.C. Director: Prof. Osama A. Kandil.

III. National and International Presentations:

1. “Computation of Vortex Wake Flow and Fluid/Dynamics Interaction of a Generator/Follower

Configuration,” Computational Aerodynamics Branch, NASA Langley Research Center,
Hampton, VA, November 23, 1993. Prof. Kandil gave the presentation.

. “Supersonic Vortex Breakdown Over a Delta Wing in Transonic Flow,” AIAA 11th Applied
Aerodynamics Conference, Monterey, CA, August 1993. Prof. Kandil gave the presentation.

. “Computation of Vortex Flow and Dynamics Interaction of a 747/747 Generator/Follower
Configuration,” Flight Vehicle Research Branch, NASA Langley, July 20, 1993. Prof. Kandil

gave the presentation.

. “Unsteady Vortex Aerodynamics,” Presentation to P.R. China Visitors, ODU, June 20, 1993.
Prof. Kandil gave the presentation.

. “Active Control of Asymmetric Conical Flow Using Spinning and Rotatory Oscillation,”
AIAA 24th Fluid Dynamics Conference, Orlando, FL, July 6-9, 1993. Prof. Kandil gave
the presentation.

. “Shock-Vortex Interaction Over a 65-Degree Delta Wing in Transonic Flow,” AIAA 24th
Fluid Dynamics Conference. Orlando, FL, July 6-9, 1993. Prof. Kandil gave the presentation.

. “Three-Dimensional Supersonic Vortex Breakdown,” AIAA 31st Aerospace Sciences Meeting,

Reno, Nevada, January 9-13, 1993. Prof. Kandil gave the presentation.

. “Supersonic Vortex Breakdown,” Division Review of Computational Aerodynamics Branch,
NASA Langley Research Center, February 4, 1993. Dr. Liu and Prof. Kandil gave the

presentation.







IV. Papers Submitted or Accepted for Presentation:

1.

Kandil, O. A., Wong, T.-C. and Liu, C. H., “Turbulent Flow Over a 747/747 Genera-
tor/Follower Configuration and Its Dynamics Response,” submitted for presentation at the
AIAA 25th Fluid Dynamics Conference, Colorado Springs, Colorado, June 20-23, 1994.

Kandil, O. A., Kandil, H. A. and Liu, C. H., “Supersonic Vortex Breakdown Over a Delta
Wing in Transonic Flow,” submitted for publication in the Journal of Aircraft.

Kandil, O. A., Kandil, H. A. and Liu, C. H., “Three-Dimensional Supersonic Vortex Break-
down,” submitted for publication in the AIAA Journal.

Kandil, O. A., Sharaf, El-Din, H. H. and Liu, C. H., “Active Control of Asymmetric Conical
Flow Using Spinning and Rotatory Oscillation,” submitted for publication in the Journal of

Aircraft.

. Research Group:

The Principal Investigator has been assisted by the following persons in the research group:

. Dr. T. C. Wong, Research Associate, Aerospace Engineering Department, Old Dominion

University, Vortex-Wake Flows

Dr. Hamdy A. Kandil, Research Assistant Professor, Aerospace Engineering Department,
Old Dominion University, Vortex-Breakdown Flows.

Mr. Hazem H. Sharaf El-Din, Ph. D. Candidate, Aerospace Engineering Department, Old
Dominion University, Passive and Active Control of Asymmetric Flows.



-



S Sy

ATAA-93-2958

ACTIVE CONTROL OF ASYMMETRIC
CONICAL FLOW USING SPINNING
AND ROTATORY OSCILLATION

Osama A. Kandil and Hazem H. Sharaf El-Din
Old Dominion University, Norfolk, VA 23529

C. H. Liu
NASA Langley Research Center, Hampton, VA 23681

AIAA 24th
Fluid Dynamics Conference
July 6-9, 1993/Orlando, FL

For permission to copy or republish, contact the American Institute of Aeronautics and Astron.
370 L'Entant Promenade, S.W., Washington, D.C. 20024

autics

. »‘; }M.






ACTIVE CONTROL OF ASYMMETRIC CONICAL FLOW
USING SPINNING AND ROTATORY OSCILLATIONS

Osama A. Kandil' and Hazem H. Sharaf El-Din"
Old Dominion University, Norfolk, VA 23529

C. H. Liu™*
NASA Langley Research Center, Hampton, VA 23681

ABSTRACT

The effectiveness of active control on asymmet-
ric flows around circular cones is investigated com-
putationally using cone spinning and rotatory oscil-
lation around its axis. The investigation uses the
time-accurate solution of the unsteady, compressible,
full Navier-Stokes equations with the implicit, up-
wind, flux-difference splitting, finite-volume scheme.
The present solutions are obtained under the locally-
conical-flow assumption in order to understand the
flow physics using very fine grids for reasonable flow
resolution at low computational cost. For all the com-
putational solutions, a grid of 241 x81x2 points in
the wrap-around, normal and axial directions, respec-
tively, is used. The grid is spinning or oscillating
rigidly with the cone according to its motion and
the kinematical and dynamical boundary conditions
are modified accordingly. The computational appli-
cations include the effects of uniform spinning rates
and periodic rotatory oscillations at different ampli-
tudes and frequencies on the flow asymmetry.

INTRODUCTION

The problems of prediction, analysis and control
of asymmetric vortical flows around slender pointed
bodies are of vital importance to the dynamic stability
and controllability of missiles and fighter aircraft.
The onset of flow asymmetry occurs when the relative
incidence (ratio of angle of attack to nose semi-apex
angle) of pointed forebodies exceeds certain critical
values. In addition to the relative incidence as one
of the influential parameters for the onset of flow
asymmetry. the freestream Mach number. Reynolds
number and shape of the body-cross sectional area
are also important parameters.
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AlAA
** Senior Rescarch Scientist, Computational Acrodynamics Branch, Associate
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Substantial research efforts have recently been de-
voted for eliminating or alleviating flow asymmetry
and its corresponding side force. In the experimental
area, several passive-control methods!=3 and active-
control methods*® have been investigated. Compu-
tational simulations have also been used to investigate
the effectiveness of several passive-control methods’
and active-control methods” '% 11, Various methods
of passive control were demonstrated in the above ref-
erences which include the use of vertical fins along
the leeward plane of geometric symmetry, thin and
thick side strakes with different orientations, and ro-
tatable forebody tips which have variable cross sec-
tion (from a circular shape at its base to an elliptic
shape at its tip). It was shown by Kandil et al.? that
side-strake control is more practical than vertical-fin
control since the former was more effective over a
wide range of angle of attack than the latter. More-
over, side-strake control provided an additional lifting
force. However, the effectiveness of side-strake con-
trol terminated at very high angles of attack for the
considered strake geometry and flow conditions.

Various active-control methods have been used
which include forebody blowing and movable fore-
body strakes. The forebody blowing methods include
forward blowing, normal blowing, aft blowing and
tangential blowing. The main purposes of forebody
blowing are to control flow separation on the fore-
body and to create yawing forces and moments which
can be utilized in controlling the body.

In Ref. 12, the authors investigated the effective-
ness of two methods of active control which include
flow injection and surface heating. The study of
flow-injection control covered normal and tangential
injection. Moreover, a hybrid method of flow con-
trol which combined surface heating and normal in-
jection methods was also investigated. These active
control methods were directed at either rendering the
asymmetric vortical flow symmetric or rendering the
surface-pressure distribution symmetric.

Active control of asymmetric flows around slender
pointed bodies using body spinning about its axis has



recently been investigated experimentally. Kruse!®
investigated the effects of several spinning rates on
the side force of a 10° half apex-angle cone. The re-
sults were presented for spin tests at 58-60° angle of
attack, 0.6 Mach number and 1x 10% Reynolds num-
ber (based on diameter). For the 58° angle of attack,
the side force versus the roll angle was shown for
four spin rates which varied from 60 rpm (revolu-
tion per minute) to 400 rpm. For all values of spin
rates, the side force changed direction in an irregular
manner within each revolution of the cone and it was
repeatable from one revolution to the next. More-
over, the side-force variation within each revolution
showed roughly three cycles, and there was an evi-
dence that the amplitude of the side force decreases
with the increase of spin rate.

Fidler'* used spinning of the nose, nose tip and
a band of the body surface as active-control methods
for alleviating asymmetric vortex effects on a tangent-
ogive configuration. By rotating the nose, nose tip
and a band of the body just aft of the nose, the wake
pattern and the associated side forces and moments
were cyclically altered. For the nose and nose-tip
rotations, the peak-to-peak variations of the side force
were decreased as the spin rate was increased. The
results also showed that the average side force was
constant throughout the spin range. However, by
using the nose tip with three axial grit strips, the mean
side force was brought to zero.

Experimental and computational studies on the
effects of rotation and rotatory oscillations on the
vortex shedding behind circular cylinders have re-
cently been conducted by several researchers!>17.
Coutanceau and Ménard!® reviewed earlier work and
conducted experimental investigation on a circular
cylinder undergoing steady rotatory and rectilinear
motion. They concluded that if the ratio of rota-
tional velocity to rectilinear velocity is greater than 2,
then the Karman vortex street disappears. Taneda'®
showed that if the cylinder is forced to undergo a har-
monic rotatory oscillations at large values of ampli-
tude and frequency then vortex shedding is eliminated
and a symmetric flow can be generated. Chen!” et
al. integrated the velocity/vorticity formulation using
an explicit finite-difference/pseudo-spectral technique
and the Biot-Savart law to study the temporal devel-
opment of two-dimensional incompressible, viscous
flow around a circular cylinder undergoing steady ro-
tatory and rectilinear motion. Their computational
results showed that rotation does not suppress vortex
shedding for large values of the ratio of rotational ve-
locity to rectilinear velocity. This conclusion is not

in agreement with that of Cautanceau and Ménard.

In the present paper, we investigate the effec-
tiveness of spinning and rotatory oscillation as ac-
tive control methods to eliminate or alleviate the side
forces due to vortex asymmetry for a 5°-semi-apex
angle, circular cone. The investigation uses the time-
accurate solution of the unsteady, compressible, full
Navier-Stokes (NS) equations. The locally, conical-
flow assumption is used to obtain all the present so-
lutions since it provides excellent flow physics at
substantially lower computational cost in compari-
son with that required for the corresponding three-
dimensional flow cases.

FORMULATION

Governing Equations:

The vector form of the govemning equations is de-
veloped in terms of an inertial frame of reference,
and hence there are no source terms on the right-hand
side of the equations. Hence, the components of the
flow-field vector [p, pV,pe]t are absolute quantities.
This is unlike the earlier development of the gov-
emning equations by the principal author of this paper
(Ref. 18), where the equations are developed in terms
of a non-inertial frame of reference (translating and
rotation frame of reference) and source terms appear
on the right-hand side of the equations.

The conservative form of the dimensionless,
unsteady, compressible, full NS equations in
terms of time-dependent, body-conformed coordi-
nates £!,£2 and € is given by

3Q_ aEnp 8(Eb)s —n. _ _l
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and Qé,: is the grid speed. The three momentum
elements of Eq. (5) are given by

OEiri; = %’:—#[(3&5’31{" - %l%’f"%&") ?9;:
+ akofsakfn%]: j=1-3 (M
The last element of Eq. (5) is given by
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The reference parameters for the dimensionless form
of the equations are L.ax.L/ax,px and po for
the length. velocity, time, density and molecular vis-
cosity, respectively. The Reynolds number is defined
as Re = pscVacL/poc, where L is the cone length.
The pressure, p. is related to the total energy per unit
mass. e. and density, p, by the gas equation

1
p=1(y-— I)P(f - Eunun) . (9)

The viscosity, u, is calculated from the Sutherland
jaw

)= T:‘/?(%—:—g—). C =04317.  (10)

and the Prandt! number Pr = 0.72.

In Egs. (1)-(10). the indicial notation is used for
convenience. The subscripts j. k and n are summation
indices. the superscript or subscript s is a summation
index and the superscript or subscript m is a free
index. The range of j. k. n. s and m is 1-3, and
9, = 9/0r;. In Egs. (1)-(10), up is the Cartesian
velocity component, U the contravariant velocity
component. T, the Cartesian component of the shear
stress tensor. gy the Cartesian component of heat flux
vector. a the local speed of sound and M the free-
stream Mach number.

Boundary and Initial Conditions
and Grid Motion:

Boundary conditions are explicitly implemented.
They include inflow-outflow conditions, solid-bound-
ary conditions and plane of geometric symmetry con-
ditions. At the plane of geometric symmetry, periodic
conditions are enforced. Since we are dealing with
a supersonic flow, at the far-field inflow boundaries,
freestream conditions are specified and all the five
flow variables are extrapolated from the exterior val-
ues according to the Riemann-invariant characteristic
conditions. The conical shock is captured as part of
the solution. At the far-field outflow boundaries, first-
order extrapolation from the interior point is used.

Since the cone is undergoing spinning or rotatory-
oscillation motion at an angular velocity of wé;
around the x-axis, where é; is a unit vector along
the x-axis and w is either uniform (for spinning mo-
tion) or time dependent (for rotatory oscillation), the
grid is moved with the same angular velocity as that
of the body. The grid speed, “—35;-, and the metric co-
efficient, %%, are computed at each time step of the
computational scheme. Consequently, the kinemati-
cal boundary conditions at the inflow-outflow bound-
aries and at the cone surface are expressed in terms of
the relative velocities. For the dynamical boundary
condition, g% at the cone surface is no longer equal
to zero. This condition for the present rotating cone
is modified as

2

d 2
—_ = a 2 __
= —plc - = prewt = p(—a—) /7e
t cone
an
where 7. is the cone radius and a. is the acceleration
of the cone surface. It should be noted that the

o
on

cone

other tangential acceleration does not contribute to

the right-hand side of Eq. (13) since its scalar product
with 7 is zero. Finally, the boundary condition for the
temperature is obtained from the adiabatic boundary
condition, %%!Cm,e = 0.

The initial conditions correspond to the asymmet-
ric flow solution without the cone rotation.

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting,
finite-volume scheme is used to solve the unsteady,
compressible, full Navier-Stokes equations. The
scheme uses the flux-difference splitting of Roe. The
smooth flux limiter is used to eliminate oscillations
at locations of large flow gradients. The viscous-
and heat-flux terms are linearized in time and the
cross-derivative terms are eliminated in the implicit



operator and retained in the explicit terms. The vis-
cous terms are differenced using second-order accu-
rate central differencing. The resulting difference
equation is approximately factored and is solved in
three sweeps in the £!,62 and €3 directions. The
computational scheme is coded in the computer pro-
gram “FTNS3D”.

For the locally-conical flow solutions, an axial
station of z; = 1.0 is selected and the components of
the flowfield vector are forced to be equal between
this axial station and another axial station in close
proximity. This ensures that the flow variables are
locally independent of the axial direction at z; = 1.0.

The method of solution consists of two steps. In
the first step, the problem is solved for the asymmetric
flow without rotating the cone. This solution repre-
sents the initial conditions for the second step. In the
second step, the cone spinning rate or rotatory oscil-
lation is specified and the NS equations are solved
accurately in time. At each time step, the body and
the grid are rotated through an angle corresponding
to the cone rotational velocity. The metric coeffi-
cients and the grid speed are computed and the Roe
flux-difference splitting scheme is used to obtain the
solution. The computations proceed until periodic
responses are obtained.

COMPUTATIONAL APPLICATIONS

A 5° semi-apex angle circular cone is used for the
present applications. The freestream Mach number
is 1.8 and the Reynolds number based on the cone
length is 10°. A grid of 241x81x2 grid points in
the wrap-around, normal and axial directions, respec-

tively. is used for all the computational applications. .

The minimum grid size, A§3, at the cone surface is
of order 1074,

v ‘2
Initial Conditions, Cone at a = 20°, %‘1— = 0:

The cone is set at an angle of attack, a, of 20° and
the spinning rate, %““,i, is set equal to zero. Figure |
shows the total-pressure-loss (TPL) contours, surface-
pressure (SP) coefficient versus angle 6 (measured
from the windward plane of geometric symmetry)
and streamlines for the locally-conical flow solution
after 13.000 time steps. The solution is obtained
using time-accurate stepping with At = 0.001. The
solution shows that the flow is steady and asymmetric.
This solution serves as initial conditions for the next
applications with different spinning rates.

Uniform Spinning Rate:

There are several basic ideas behind the use of
spinning to alleviate or possibly eliminate the asym-
metry of vortices and their subsequent result of pro-
ducing a side force on the cone. One of the ideas
can be explained by considering the asymmetric so-
lution of Fig. 1, which represents the initial condi-
tion. By spinning the cone in the counter-clockwise
direction, the speed of boundary-layer flow on the
right-hand side of the cone is enhanced for resist-
ing flow separation while the speed of the boundary-
layer flow on the lefi-hand side of the cone is re-
tarded for producing early flow separation. More-
over, the spinning motion is adding either positive
or negative vorticity in the flowfield. Hence, by se-
lecting the appropriate spinning rate, the asymmetric
vortices might be rendered symmetric. This is the
first effect of spinning. The second effect of spin-
ning is the increase of the pressure gradient normal
to the body (%—Elmm = prrcom). For small values
of w, the effect of the pressure gradient will not be
pronounced. However, for large values of w, the ef-
fect of the pressure gradient will be pronounced. the
other idea behind using spinning as an active con-
trol method is based on the experimental data where
Kruse!3 and Fidler!* found that spinning produced
oscillatory side-force response. If the mean of the
side force is zero then the average side force will be
zero. In the next applications, we present the effects
of constant spinning at tangential velocities, 95—2 of
+0.06 and =0.2 which correspond to spinning rates,
Q, of £2.292 rpm and =7.639 rpm for a cone of one
meter long, respectively.

1. Uniform Spinning at =0.06:

Figures 2 and 3 show the results for uniform
counter-clockwise (CCW) spinning at %ﬁz = 0.06,
and Figures 4 and 5 show the results for uniform
clockwise (CW) spinning ai % = —0.06. All spin-
ning cases start at the time step n = 13,001 and the
solutions are obtained with At = 0.001. With the
present surface speed of 0.06, the cone rotates one
revolution in 9.163 dimensionless time, which cor-
responds to 9,163 time steps. Figure 2 shows the
side-force and lift coefficients (Cy and Cy ) versus the
number of time steps. It is observed that the force
coefficients reach a periodic response very quickly
and the period of oscillation is 9.163 dimensionless
time, which is equal to the time required to rotate
the cone one revolution. The Cy curve oscillates be-
tween —0.00069 and —0.00053 with a mean value of



—0.00061. The magnitude of the mean Cy is less than
the magnitude of Cy without spinning which is equal
to 0.00065. Thus, the CCW spinning reduces the
magnitude of the side force on the average. The Cp-
coefficient curve shows small-amplitude periodic re-
sponse. In Fig. 3, snapshots of the TPL contours, SP
coefficient and streamlines are shown at five instants
covering one cycle of periodic side-force response.
They are marked by the numbers 1, 2,3, 4and S
on Figs. 2 and 3. The snapshots show that the right
and left vortices heights, lateral positions, strength-
ens and separation points oscillate slightly. Conse-
quently, the corresponding surface pressures oscillate
slightly too. The CCW spinning delays flow separa-
tion on the right side and expedites flow separation
on the left side.

With the CW spinning of —0.06, the Cy and C
curves of Fig. 4 show that their periodic response is
also reached very quickly. The Cy curve oscillates
between —0.00077 and —0.00055 with a mean value of
—0.00066. The magnitude of the mean Cy is slightly
higher than the magnitude of Cy without spinning.
Thus. the CW spinning does not reduce the mean
value of side force. Figure 5 shows snapshots of the
TPL contours, SP coefficients and streamlines at four
instants (marked by 1, 2, 3 and 4 in Figs. 3 and 4) dur-
ing one cycle of periodic response. The CW spinning
increases flow separation on the right side and delays
flow separation on the left side. Comparisons of the
snapshots of Fig. 5 with the corresponding snapshots
of Fig. 3, show that the vortex on the right-hand side
of Fig. 5 (snapshot 1) moves more to the right while
the vortex on the right-hand side of Fig. 3 (snapshot
1) moves more to the left. Similar motions are ob-
served for the vortex on the left side of Figs. 5 and 3
(snapshot 1). Hence, the side force at point I of the
CW spinning will be of higher magnitude than the
side force at point 1 of the CCW spinning.

2. Uniform Spinning at +0.2:

Next. the uniform spinning is increased to 0.2.
The results of the CCW spinning are shown in Figs. 6
and 7 and the results of the CW spinning are shown
in Fig. 8. With the surface speed of 0.2, the cone
rotates one revolution in 2.749 dimensionless time,
which corresponds to 2,749 time steps. Figure 6
shows that the Cy and C curves reach a periodic
response very quickly and the period of oscillation is
2.749 dimensionless time. The Cy curve oscillates
between —0.00089 and —0.000050 with a mean value
of —0.00047. The magnitude of the mean Cy is
substantially lower than the magnitude of Cy without

spinning. Thus, the high CCW spinning does reduce

“the mean value of side force. It should be noticed

that the amplitude of oscillation of the Cy curve is
higher than that of Fig. 2. Three snapshots of the
TPL contours, SP coefficient and streamlines during
a half-cycle of the periodic Cy curve (marked by 1,
2 and 3 in Figs. 6 and 7) are shown in Fig. 7. It is
noticed that the CCW spinning substantially increases
the flow separation on the left side and delays the
flow separation on the right side. Also, it is noticed
that the right-hand side vortex moves more in the
downward and leftward directions than that of Fig. 3.
The left-hand side vortex moves more in the leftward
direction than that of Fig. 3.

Figure 8 shows the Cy and Cy periodic responses
for the CW spinning case at -0.2. The Cy curve
oscillates between —0.00102 and -0.00021 with a
mean value of —0.00615. The magnitude of the
mean Cy is lower than the magnitude of Cy without
spinning but it is substantially higher than the mean
value of the CCW spinning of Fig. 6. A snapshot of
the TPL contours, SP coefficient and streamlines is
shown in Fig. 8. The CW spinning is observed to
increase the flow separation on the right side and the
left-hand side vortex moves more to the right.

3. Uniform Spinning at +0.6:

The uniform spinning is increased to 0.6 and the
results of the CCW spinning are shown in Fig. 9.
With the speed of 0.6, the cone rotates one revo-
lution in 0.916 dimensionless time. The Cy curve
shows the periodic response which oscillates between
—0.005 and +0.0038 with a mean value of —0.0006.
With this high value of CCW spinning, the side-force
coefficient is oscillating between positive and nega-
tive values and the vortices on the left and right sides
are changing heights periodically. It is noticed that
the boundary layer at certain instants will become a
free-shear-layer band around the body (e.g. Fig. 9-
snapshot 1). Although the mean value of side force
is not zero, this test tells that there is a certain CCW
spinning value at which the mean side force will be
zero.

Rotatory Oscillations:

In this section, we investigate the effect of pe-
riodic rotatory oscillation of the cone on the flow
asymmetry and the side force. The form of the sur-
face speed is given by

o o

=V — 1
B ‘scosrf (12)



where V, is the surface-speed amplitude and T is the

period of oscillation. Substituting Eq. (12) into the

relation % = %}/rc and integrating the result one
obtains the corresponding equation for the angular
motion, 8, which is

# = 8, sin 2—"—t (13)

: T

where 0, = 5‘-/;;": By specifying V; and 7, one can
obtain the amplitude of the angular motion, 6, for a
certain value of the cone radius, r.. Next, we present
the results for different values of V; and 7 of the
periodic rotatory oscillation.

1. Rotatory Oscillation; V;=0.06, 7=7.2, 6,=45°:

The corresponding frequency of this motion is
0.873. The results of this case are given in Fig. 10.
The period of the Cy response is observed to be
7.2 which is the same as that of the motion. The
Cy curve oscillates between —0.00077 and —0.00054
with a mean value of —0.000655, which is between
the mean values of CCW and CW spinning cases of
Figs. 2 and 4. Hence, these values of Vs, T and 6a
for the rotatory oscillation do not reduce the mean
value of Cy.

2. Rotatory Oscillation; V5 = 0.2, 7 = 4.3, §; = 90°:

The corresponding frequency of this motion is
1.461. The results of this case are given in Fig. 11.
The period of the Cy response is observed to be 4.3
which is the same as that of the motion. The Cy curve
oscillates between —0.00105 and —0.0002 with 2 mean
value of —0.000625. This mean value of the Cy is
higher than that of the CCW spinning case of Fig. 6
and is slightly higher than that of the CW spinning
case of Fig. 8. Hence, these values of 1.7 and 8,
for the rotatory oscillation do not reduce the mean
value of Cy.

3. Rotatory Oscillation; Vs = 0.5,
=172, 8, = 375°%

The corresponding frequency of this motion is
0.873. which is the same as that of the case of Fig. 10.
However. the amplitudes of the surface velocity and
angular motion are one order of magnitude higher
than those of the case of Fig. 10. The results of this
case are given in Fig. 12. Although the Cy response
is periodic with the same period as that of the motion,
there are several peaks within each period. The Cy
changes sign from positive to negative and the mean
value of the Cy is zero. This shows that the values of

Vs, 7 and 8, for the rotatory oscillation eliminate the
Cy on the average. It should be emphasized here that
both the amplitudes of surface velocity and angular
motion are one order of magnitude higher than that
of the case of Fig. 10.

4. Vs =05 1=43, 60, = 225"

The corresponding frequency of this motion is
1.461, which is the same as that of the case of Fig. 11.
However, the amplitudes of the surface velocity and
angular motion are 2.5 times as those of the case of
Fig. 11. The results of this case are given in Fig. 13.
The Cy response is periodic with the same period
as that of the motion, but with several peaks within
each period. Here again the Cy changes sign from
positive to negative and the mean value of the Cy
is =0.00015, which is better than that of any of the
uniform spinning cases or the rotatory oscillations of
Figs. 10 and 11. However, it is higher than that of
the previous case. The only differences between this
case and the previous case is the period of oscillation
and the amplitude of angular motion. Although the
magnitude of the mean Cy is higher than that of the
case of Fig. 12, the peak values of Cy of the present
case are substantially lower than those of the previous
case. It seems that the best Cy response (zero mean
and small amplitude) can be achieved by using the
higher 8, and the lower T of the present case and
the previous case. Optimal control laws should be
developed to effectively investigate this problem.

CONCLUDING REMARKS

In the present study, the effectiveness of uniform
spinning and rotary oscillation as active control meth-
ods for alleviating the flow asymmetry and the side
force has been investigated computationally. It has
been shown that a large value of uniform CCW spin-
ning rate is very effective in substantially reducing the
side force on the average for the given initial case of
asymmetric flow. The CCW spinning increases flow
separation on the left side and delays it on the right
side. which produces equal positive and negative side
forces within each cycle of the side-force response.
The rotatory oscillation with large surface-velocity
amplitude, large angular-motion amplitude and small
period of oscillation (high frequency) is much more
effective than the uniform CCW spinning for the same
surface velocity because it does not only eliminate
the mean side force but it also reduces the amplitude
of the side force substantially. Moreover, the effec-
tiveness of the rotatory oscillation control does not
require certain initial shape of the vortex asymmetry.



Work is currently underway to study the effectiveness
of the rotatory oscillation control on asymmetric flow
cases with periodic vortex shedding at high angles of
attack. Optimal control laws should be developed for
investigating this problem.
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ABSTRACT

The effects of freestream Mach number and angle of
attack on the leading-edge vortex breakdown due to the
terminating shock on a 65—degree, sharp-edged, cropped
delta wing are investigated computationally. The compu-
tational investigation uses the time-accurate solution of
the laminar, unsteady, compressible, full Navier-Stokes
equations with the implicit, upwind, flux-difference split-
ting, finite-volume scheme. A fine O-H grid consisting of
125 x85x84 points in the wrap-around, normal and axial
directions, respectively, is used for all the flow cases.
Keeping the Reynolds number fixed at 3.23x10°, the
Mach number is varied from 0.85 to 0.9 and the angle
of attack is varied from 20° to 24°. The results show that
at 20° angle of attack, the increase of the Mach number
from 0.85 to 0.9 results in moving the location of the ter-
minating shock downstream. The results also show that
at 0.85 Mach number, the increase of the angle of at-
tack from 20° to 24° results in moving the location of
the terminating shock upstream. The results are in good
agreement with the experimental data.

INTRODUCTION

The literature shows that vortical flows around delta
wings in the low-speed regime have received a substantial
volume of experimental' and computational®® research
work. In the high angle of attack range, vortical flows in
the low-speed regime are characterized with three types
of boundary-layer separation, namely; primary, secondary
and tertiary separations. The primary separated flow rolls
up into a strong primary vortex core which produces a
strong suction-pressure peak on the wing surface. The
spanwise adverse-pressure gradient of the primary vortex
causes the spanwise, outboard-moving, boundary-layer
flow to separate forming a secondary vortex with opposite
sense of rotation to and smaller strength than that of the
primary vortex. The spanwise adverse-pressure gradient
of the secondary vortex causes the spanwise, inboard-
moving, boundary-layer flow to separate forming a ter-
tiary vortex with same sense of rotation as and substan-
tially small strength than that of the primary vortex. The
spanwise surface-pressure curves are characterized with
three suction-pressure peaks which varies in strength cor-
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responding to the locations of the primary, secondary and
tertiary vortices. When the angle of attack reaches a crit-
ical value, the axial-pressure gradient and the high swirl
ratio of the primary vortex produce a stagnation point
along the path line of the primary-vortex core, and vor-
tex breakdown of the primary core develops. Depending
on the swirl ratio, axial pressure gradient and Reynolds
number, the primary-core vortex-breakdown mode might
be a bubble type, a spiral type or a bubble-spiral type.

As the freestream Mach number increases, the vortical
flow around the delta wing changes substantially due to
the compressibility effects. In the supersonic flow regime,
shock waves appear beneath or above the primary vor-
tex, depending on the freestream normal Mach number
and normal angle of attack. Experimental data'®'! and
the computational results'?"'* have shown these types of
vortical-flow structures. The foot print of these shock
waves runs along a ray line from the wing vertex. If
the shock wave is beneath the primary vortex, it interacts
with the spanwise, outboard-moving, boundary-layer flow
and causes, in addition to the adverse pressure gradient
produced by the primary voriex, secondary-flow separa-
tion. If the shock wave is above the primary vortex, it
flattens the primary vortex and the spanwise surface pres-
sure curve. Comparison of the surface pressure distribu-
tion over a delta wing in low-speed and supersonic-speed
regimes, shows that the suction-pressure peak correspond-
ing to the primary vortex is lower for the supersonic flow
than that for the low-speed flow.

In the transonic-flow regime, research work on vor-
tical flows around delta wings was given adequate at-
tention only recently. Understanding the steady and un-
steady, transonic, vortical-flow structures around deha
wings in the moderate-high angle of attack range is im-
portant for increasing the performance quality of the new
generation of supermaneuver aircraft (e.g. YF22). Recent
experimental measurements of transonic flows around a
65° cropped delta wing!5-2! show that a complex shock-
wave system appears over the upper wing surface. The
shock-wave system consists of a ray shock wave beneath
the leading-edge primary vortex and a transverse, time-
dependent'®, normal-shock wave (known as a terminat-
ing shock) which runs from the plane of symmetry to the
wing leading edge. The terminating shock wave interacts

! NRGEDING PAGE BLANK NOT FILMED



with the primary-vortex core causing it to breakdown at
an angle of attack as low as 18°. Such a critical angle
of attack is substantially smaller than the critical angle
of attack of vortex breakdown in the low-speed regime.
Reference 21 contains extensive flow measurements for
the 65° cropped delta wing with and without leading-
edge extension (LEX). A complete reconstruction of the
three-dimensional flow ficld at and behind the terminating
shock was not possible experimentally.

Computational simulations for transonic delta-wing
flows have been developed on a very limited scale by
using the Euler equations® 2 and the thin-layer Navier-
Stokes equations™. The Euler-equations solutions were
not capable of fully resolving the flow in the terminating
shock region and the thin-layer Navier-Stokes-equations
solutions did not address that region. In Ref. 24 by the
present authors, the laminar, unsteady, compressible, full
Navier-Stokes equations are integrated time accurately us-
ing the implicit, upwind, flux-difference splitting, finite-
volume scheme to study and construct the flow field
structure of a transonic flow around a 65° sharp-edged,
cropped-delta wing at 20° angle to attack, 0.85 Mach
number and 3.23x10% Reynolds number. A fine O-H
grid consisting of 125 x 85 x84 points in the wrap-around,
normal and axial directions, respectively, is used for the
computational solution. A A-shock system, which con-
sists of a ray shock under the primary vortex core and
a transverse terminating shock, has been captured. Be-
hind the terminating shock, the leading-edge vortex core
breaks down into a two-bubble cell type. The terminat-
ing shock and the vortex breakdown region behind it are
time dependent and appear to be oscillatory. The flow
field ahead of the terminating shock is steady and in-
cludes a supersonic pocket which is surrounded by the
ray shock and the terminating shock. The flow inside
the pocket does not change due to changes in the flow
downstream. This is consistent with the fact that the su-
personic pocket along with the terminating shock do not
allow disturbances to propagate upstream. These results
have been validated using the available experimental data
and they are in good agreement. This work gives a com-
plete construction of the flow field over the wing surface
and in particular the structure of the flow at the terminat-
ing shock and behind it.

In this paper, a parametric study is carried out to in-
vestigate the effects of freestream Mach number and an-
gle of attack on the terminating shock and the leading-
edge, primary-vortex breakdown for the same 65° sharp-
edged, cropped delta wing. The computational investiga-
tion uses the same equations, computational scheme and
grid of Ref. 24. Keeping the Reynolds number fixed at
3.23x10°, the Mach number is changed from 0.85 to 0.9
while the angle of attack is fixed at 20°, and the angle
of attack is changed from 20° to 24° while the Mach
number is fixed at 0.85.
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HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-
nates £!,&% and € (Ref. 25).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into
two parts; left and right flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to
eliminate oscillations at locations of large flow gradients.
The viscous- and heat-flux terms are linearized in time
and the cross-derivative terms are neglected in the im-
plicit operator and retained in the explicit terms. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in
the &1, €7 and ¢° directions. The computational scheme
is coded in the computer program “FTNS3D” which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept-back, sharp-edged, cropped delta wing
of zero thickness is considered for the computational so-
lutions. The cropping ratio (tip length/root-chord length)
is 0.15. An O-H grid of 125x85x 84 in the wrap-around,
normal and axial directions, respectively, is used. The
computational domain extends two-chord length forward
and five-chord length backward from the wing trailing
edge. The radius of the computational domain is four-
chord length. The minimum grid size normal to the wing
surface is 5x10™ from the leading edge to the plane of
symmetry. Figure 1 shows a three-dimensional shape of
the grid and a cross-flow plane.

Time-accurate integration of the laminar, unsteady,
compressible, full Navier-Stokes equations has been car-
ried out with At = 0.0002. Three flow conditions are
used to study the effect of increasing the Mach number
while the angle of attack is kept constant and the effect
of increasing the angle of attack while the Mach num-
ber is kept constant. In all the three cases, the Reynolds
number, R, is 3.23x 10° based on the root-chord length.

Case I (M, = 0.85, a = 20°)

For this case, the freestream Mach number, M,,, and
angle of attack, a, are 0.85 and 20°, respectively. Figure 2
shows a comparison of the computed, spanwise, surface-
pressure coefficient (Cp) at different chord stations (x =



0.3, 0.6 and 0.8) with the experimental data of Erickson?!
(R, = 3.23x10°%) and Hartmann'? (R, = 2.38x10® and
4.57x10%). The computational results show the correct
location and level of the suction-pressure peak corre-
sponding to the primary vortex in comparison with the
experimental data. They also show a smaller suction-
pressure peak corresponding to the secondary vortex. The
computational results are in fair to good agreement with
the experimental data. For the chord station x = 0.9, the
Cp-curve shows a rapid increase in the pressure coeffi-
cient (a decrease in the suction-pressure coefficient). For
example, the suction-pressure-peak coefficient increases
from a value of -1.4 at x = 0.8 to a value of -1.15 at x =
0.9. Figure 3 shows the total-Mach contours and stream-
lines at the chord stations of x = 0.60, 0.90 and 0.97.
At x = 0.60, the Mach contours show an oblique shock
beneath the primary vortex and a subsonic, separated re-
gion to its right. The streamlines show a secondary sepa-
rated flow and the corresponding secondary vortex. This
separation is due to the shock interaction with the sur-
face boundary-layer flow and is also due to the adverse,
spanwise pressure gradient created by the primary vor-
tex. At x = 0.90, the shock beneath the primary vortex
becomes weak and the primary-vortex size increases. At

= 0.97, the shock beneath the primary vortex disap-
pears and the primary vortex diffuses and reduces to a
repelling -focus, as shown by the streamiines. The details
of the flow structure at x = 0.90 and 0.97 in addition
to the spanwise, pressure-distribution curve at x = 0.90
clearly indicate that the primary vortex is experiencing a
vortex breakdown due 1o a transverse shock (terminating
shock) which is located between x = 0.80 and x =0.90.

Figure 4 shows the static pressure contours on the
wing and symmetry planes. The contours clearly show
the location, shape and strength of the terminating shock.
A substantial supersonic pocket which is bounded by the
terminating shock and the ray shocks (shocks beneath
the primary-vortex cores) is observed on the wing plane.
The terminating shock is located at x = 0.83 at the
plane of symmetry, which is in good agreement with the
experimental data?', where the shock is located at x = 0.84
at the plane of symmetry. Figure 5 shows the position of
ray lines from the wing vertex (which are marked by the
lewters A-H) and the static-pressure variation along these
lines. The static-pressure curves give several points to
generate the foot-print line of the terminating shock. The
terminating shock is found to extend from the plane of
symmetry to the wing leading edge. It reaches its highest
strength at the location of the primary vortex (lines E-G).
Figure 6 shows the total-Mach contours and streamlines
on a vertical ray plane at the 0.68 spanwise location which
passes through the vortex breakdown. Blow-ups of the
velocity vectors and streamlines on this ray plane are also
shown in Fig. 6. The streamlines conclusively show a
two-bubble cell vortex breakdown. It is a typical three-
dimensional vortex breakdown mode which consists of
an attracting saddle point (front), a repelling saddle point
(rear), an attracting focus (top), and a repelling focus
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(bottom). Such a breakdown mode is similar to the one
which was captured for an isolated supersonic vortex in
an unbounded domain in Refs. 26 and 27. The location
of the attracting saddle point is at 0.97 along the ray line
which corresponds to a location of 0.87 along the axial
direction. The Mach contours show that the front surface
of the vortex-breakdown bubbles is enclosed by a hemi-
spherical shape-like shock surface. In Fig. 18, the details
of the flow structure on the wing and symmetry planes
are shown.

Having established the flow structure of this case, the
Mach number is increased to 0.9 while the angle of attack
is kept fixed at 20°.

Case II (M, = 0.90, a = 20°)

The results of this case are given in Figs. 7-11 and
19. Figure 7 shows the computational spanwise, surface-
pressure coefficient at different chord stations along with
the experimental data of Erickson?!. The computational
results are in good agreement with the experimental data
at x = 03 and 0.6. At x = 0.8, the computational re-
sults underestimates the pressure coefficient of the exper-
imental data. The locations of the primary and secondary
vortex cores are in good agreement with those of the ex-
perimental data. It is noticed that the levels of C, for
the present case are lower than those of Case I (Fig. 2).
Again, the pressure level decreases rapidly at x = 0.90.
Figure 8 shows the total-Mach contours and streamlines
in cross-flow planes at x = 0.60, 0.90 and 0.97. The shock
beneath the primary vortex is observed in the Figures at
x = 0.60 and x = 0.90. For x = 0.90, the shock beneath
the primary vortex is still strong in comparison with that
of Case I (Fig. 3). At x = 0.97, the repelling focus is
observed indicating that vortex breakdown has occurred.
Figure 9 shows that the terminating shock in the cross-
flow plane is located at x = 0.93 within the boundary-
layer, which is in good comparison with the experimen-
tally measured shock of Ref. 21, where it is located at x

= 0.95. The static-pressure contours on the wing plane

show that the terminating shock for Case II (Fig. 9) is
closer to the trailing edge that of Case I (Fig. 4). It should
be noted here that the terminating-shock location in the
outer flow is ahead of its location in the boundary-layer
flow. The static-pressure variations along the ray lines of
Fig. 10 clearly show that the terminating-shock foot print
is located between x = 0.925 and x = 0.95, and that it
extends from the plane of symmetry to the wing leading
edge. Figure 11 shows the Mach contours and stream-
lines on a vertical ray plane passing through the vortex
breakdown. It is noticed that the vortex breakdown shape
is different from and smaller than that of Case I (Fig. 6).
The attracting saddle point, attracting focus and repelling
saddle point are clearly observed. The repelling focus
is very small. This indicates that the terminating shock
becomes smaller in strength than that of Case I. Figure
19 shows the details of this flow case on the wing and
symmetry planes.



It is concluded that as the freestream Mach number
increases slightly from 0.85 to 0.9, the terminating shock
strength decreases and its location moves downstream
from x = 0.84 to x = 0.93. Moreover, the surface pressure
levels become smaller than those of Case I.

Next, the Mach number is kept fixed at 0.85 and the
angle of attack is increased to 24°.

Case IIT (M, = 0.85, o = 24°)

The results of this case are given in Figs. 12-17 and
20. The computational surface-pressure result at x = 0.3
(Fig. 12) is in good agreement with the experimental data
of Erickson?'. However, the computational results, at x
= (.6 and 0.8 are either overpredicting or underpredicting
the experimental data. Figures 13, 14 and 15 show that
the terminating shock moves upstream to x = 0.753 in the
boundary-layer flow at the plane of symmetry. This is in
good agreement with the experimental data of Ref. 21,
where the shock is located at x = 0.75 in the boundary
layer flow. The terminating-shock location in the outer
flow is ahead of its location in the boundary layer. Figure
16 shows that the vortex-breakdown region is larger than
those of Cases I and II. Moreover, the attracting and
repelling foci are smaller than those of Case 1. Figure 20
shows the details of this case on the wing and symmetry
planes.

Thus, it is seen that as the angle of attack increases
from 20° to 24° while the Mach number is kept fixed
at 0.85, the terminating shock moves upstream and the
vortex-breakdown region becomes large. Moreover, the
surface pressure levels become larger than those of Case I.

The computational results show that the flow at the
terminating shock and behind it is time dependent and it
indicates oscillatory motion (The computations have not
been carried out beyond t = 6.0 or 30,000 time steps
with At = 0.0002). In Fig. 17, we show snapshots of the
streamlines and their blow-ups on a ray plane passing
through the vortex-breakdown region. The snapshots
are shown at t = 4,22, 5.16 and 5.52. It is clearly
seen that the vortex breakdown moves upstream showing
different modes. In the same time, the terminating shock
is also moving upstream and slows down to reverse its
direction of motion. This is in complete agreement with
the experimental observations of Bannik and Houtmann'®,

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting finite-volume
scheme to study the transonic flow field around a 65°
sharp-edged, cropped delta wing. First, the flow field has
been constructed for a Reynolds number of 3.23x 105,
a Mach number of 0.85 and an angle of attack of 20°
(Case I). A A-shock system consisting of a ray shock be-
neath the primary vortex core and a transverse terminating
shock has been captured. Behind the terminating shock,
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the leading-edge vortex core breaks down. Keeping the
Reynolds number constant and the angle of attack fixed
at 20°, the Mach number is increased to 0.90. The results
of this case (Case II) show that the terminating shock
moves downstream and the vortex-breakdown region be-
comes smaller than that of Case 1. Keeping the Reynolds
number constant and the Mach number fixed at 0.85, the
angle of attack is increased to 20°. The results of this
case (Case III) show that the terminating shock moves up-
stream and the vortex-breakdown region becomes larger
than that of Case 1. The computational results are in good
agreement with the experimental data. However, it must
be emphasized that the flow at the terminating shock and
behind it is time dependent while the flow ahead of the
terminating shock is steady. The present paper shows the
structure of the flow field behind the terminating shock
for the first time.
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Fig. 8 Total-Mach contours and streamlines in cross-flow planes; M, = 0.90, o = 20
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Fig. 13 Total-Mach contours and streamlines in cross-flow planes; A, = 0.85, o = 24°.

1.8e
PRESS. CONTOURS ON THE PLANE OF SYMMTRY

PRESSURE CONTOURS ON THE WING SURFACE

Fig. 14 Static-pressure contours on the wing and symmetry planes;
My = 085, o = 24°,

POSITION OF RAYS ON THE WING SURFACE PRESSURE D!STRIGUTION ON THE WING SURFAC
——— 77 T T T T T

9
[

asurae diatributl

\ . R S S ST S
e 1 .2 3 4 5 6 7 B8 .9t e o+ 2 3 4 5 & 7 8 9 1.9
AXTAL DISTANCE . x AXIAL OISTANCE . =
DELTA VING Moo+B B85 Re:=3,230.000 DELTA VING Maos@ BS Aes3. 230, 008

Fig. 15 Ray lines on the wing surface and the static-pressure variation along them;
My = 0.85, a = 24°.
592



.78

-

7z s
" s T -.-'.g e P
TOTAL MACH NUMBER CONTOURS

e T T
=

STREAMLINES

Fig. 16 Total-Mach contours, streamlines and velocity vectors on a ray pfane

»t S .g:' i,v’r':_?». ‘i"
el

2.36

STREAMLINES

passing through the vortex breakdown; My, = 0.85, o ="24°,

Fig. 17 Streamlines and blow-up on a ray plane passing through the vortex

t=4.22
t=15.16
t =552

breakdown at different time levels; Al = 0.85, a = 24°.

593



Supersomc Vortex Breakdown ona De]ta ng
M 0 85 Re 230 000 and AOA 20

,‘&; )

08 10

Fig. 18 Surface -pressure and Mach contours and pamcle trace on wing and
symmetry planes; M/ = 0.85, a = 20°.
594 '







- Supersonic Vortex

Breakdown on a Delta Wing -

3

3230,0004nd AOA-20

4

Fig. 19 Surface-pressure and Mach contours and particle trace on wing and
symmetry planes: M/ = 0.90, oo = 20°
595







Supersonic Vone‘x“ Breakdown on a Delta Wing
IY;I,’{O.SS, Re =,,3,230;000‘ and AOA - o’

e Surface_Pressure R

011 . 0.52 _’;.-:’4"‘

T R
iR .

M- 085, Re - 3230.000 and AOA -2¢

~~ Mach_Contours
075 102 130 - ¢ : T o f 0
Fig. 20 Surface-pressure and Mach contours and particle trace on wing and
symmetry planes: My = 0.85. o = 247,
596







¥

ATAA-93-2973

SHOCK-VORTEX INTERACTION
OVER A 65-DEGREE DELTA WING

IN TRANSONIC FLOW

Osama A. Kandil and Hamdy A. Kandil
Old Dominion University, Norfolk, VA 23529

C. H. Liu
NASA Langley Research Center, Hampton, VA 23681

AlAA 24th
Fluid Dynamics Conference

July 6-9, 1993 / Orlando, FL

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Entant Promenade, S.W., Washington, D.C. 20024






SHOCK-VORTEX INTERACTION OVER A 65-DEGREE DELTA WING IN TRANSONIC FLOW
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NASA Langley Research Center, Hampton, VA 23681

ABSTRACT

Transonic flow over a 65—-degree swept-back, sharp-
edged, cropped delta wing is investigated computationally
using the time-accurate solution of the unsteady, com-
pressible, full Navier-Stokes equations with an implicit,
upwind, flux-difference splitting, finite-volume scheme.
Coarse and fine O-H grids are used to obtain the so-
lution. The grid consists of 125x85x84 points in the
wrap-around, normal and axial directions, respectively.
The results are presented for an angle of attack of 20°,
March number of 0.85 and Reynolds number of 3.23x10°
(based on the wing chord length). With the fine grid, the
results show that a system of shocks has been captured
over the upper wing surface, and that the leading-edge
voriex core experiences an unsteady, supersonic vortex
breakdown after passing through a spanwise shock (ter-
minating shock) near the wing trailing edge. The com-
puted results at a certain time are in good agreement with
the experimental data. Topological aspects of the vortex-
breakdown flowfield are also presented and discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex break-
down for incompressible flows around delta wings has
been observed along the leading-edge primary vortex
cores. Two distinct forms of vortex breakdown have been
documented experimentally’. The first form is the bubble
type and the second form is the spiral type. The bub-
ble type shows an almost axisymmetric sudden swelling
of the vortex core into a bubble, while the spiral type
shows an asymmetric, spiral, vortex filament followed by
arapidly spreading turbulent flow. Both types are charac-
terized by an axial stagnation point and a limited region
of reversed axial flow. Much of our knowledge of in-
compressible vortex breakdown has been obtained from
experimental studies of pipe flows where both types of
breakdown and other types as well were generated and
documented?™.

The major effort of computational study of vor-
tex breakdown flows has . also-been—focused -on -iso-
lated swirling flows. For incompressible flows, quasi-
axisymmetric, bubble-type, vortex-breakdown flows were
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** Research Associate, Acrospace Engineering Department, Member
AlAA.
** Senior Rescarch Scientist, Computational Aerodynamics Branch,
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computed using the Navier-Stokes equations>®. Three-
dimensional bubble and spiral vortex-breakdown flows
were also computed for isolated swirling flows using
the three-dimensional Navier-Stokes equations in the

vorticity-velocity form or the primitive variables form>!!.

Interaction between a longitudinal vortex and a trans-
verse shock wave occurs in several flow applications
which include transonic and supersonic flows over a delta
wing or a strake-wing configuration at moderate to high
angles of attack, a supersonic inlet ingesting a voriex,
and a supersonic combustor where fuel is injected in a
swirling jet to enhance fuel-air mixing'*'%. For delta
wings and strake-wing configurations, vortex breakdown
is an undesirable phenomenon since it produces wing
stall. Therefore, its occurrence needs to be delayed with
passive ar active control methods in order to increase
the wing performance at large angles of auack. For
a supersonic combustor, vortex breakdown is desirable
since it enhances mixing of air and fuel and stabilizes the
flame!316. Therefore its occurrence needs to be enhanced
and controlled.

For supersonic flows, quasi-axisymmetric bubble-type
vortex-breakdown! ™% and three-dimensional bubble-type
and spiral-type vorex breakdown? for isolated swirling
flows have been recently computed by the present au-
thors. Using compatible, inlet boundary conditions, the
time-accurate solutions of the unsteady, compressible, full
Navier-Stokes equations were obtained to study the ef-
fects of Reynolds number, Mach number, swirl rato,
type of exit-boundary conditions and grid fineness and
distribution on the vortex-breakdown modes for internal
and external flows. Several modes of vortex breakdown
which include transient single-bubble, transient multi-
bubble, periodic multi-frequency multi-bubble, quasi-
steady two-bubble cell and spiral-type voriex break-
downs have been obtained?. For three-dimensional
vortex-breakdown flows in a swirling, supersonic jet
flow, topological aspects of the critical points in the
vortex-breakdown region have been studied and com-
pared with the available experimental incompressible
vortex-breakdown topology.

Recent experimental measurements22 of transonic



flows around a 65° swept-back, cropped delta wing show
that shock wave formation is likely to occur undemeath
the leading-cdge primary vorex core. In cross-flow
planes perpendicular to the wing, the cross-flow beneath
the primary vortex reaches supersonic speeds and a cross-
fiow shock develops beneath the primary vortex similar
to the supersonic flow in a convergent-divergent nozzie.
These measurements also show that a transverse shock
“terminating shock”™ which might cause primary-vortex-
core breakdown could develop in an analogous manner
to the shock that terminates the two-dimensional super-
sonic pocket on an airfoil. A complete reconstruction
of the three-dimensional flow field on the delta wing in
this region was not possible experimentally?*- 26, Com-
putational simulations for transonic delta-wing flows have
been developed by using the Euler equations”™ * and
the thin-layer, Navier-Stokes equations?”®. The Euler-
equations solutions were not capable of fully resolving
the flow in the terminating shock region and the thin-
layer, Navier-Stokes solution did not address that region.

In the present paper, we consider the transonic flow
around a 65° sharp-edged, cropped delta wing at an angle
of attack of 20°, a Mach number of 0.85 and a Reynolds
number of 3.23 x10%. The purpose of the present numer-
ical simulation and study is to construct the flow field
over the wing with particular emphasis of the vortex
core-terminating shock interaction region. The laminar,
unsteady, compressible, full Navier-Stokes equations are
solved accurately in time with an implicit, flux-difference
splitting, finite-volume scheme. The computations are
carried out with time-accurate stepping on two O-H grids;
a coarse grid and a fine grid. Both grids consist of
125x 85 x84 points in the wrap-around, normal and axial
directions, respectively. The main difference between the
coarse and fine grids is the distribution of the grid points
normal to the wing surface within the thin viscous layer
(to be discussed later on).

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-
nates £!,£7 and €3 (Ref. 18).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into
two parts; left and right flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to
eliminate oscillations at locations of large flow gradients.

The viscous- and heat-flux terms are linearized in time
and the cross-derivative terms are neglected in the im-
plicit operator and retained in the explicit terms. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in
the ¢!,£2 and ¢ directions. The computational scheme
is coded in the computer program “FINS3D” which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept-back, sharp-edged, cropped delta wing
with zero thickness is considered for the computational
solutions. The cropping ratio (tip length/root-chord
length) is 0.15. The wing angle of atack is 20°, and the
freestream Mach number and Reynokis number (based
on the root-chord length) are 0.85 and 3.23x10%, re-
spectively. The reason behind the present, selected flow
conditions is because of the uncenainty of the existing
experimental data2¢ about the structure of the down-
stream flow field of the leading-edge vortex core. The
experimental data shows that a supersonic flow region
appears on the upper wing surface near the plane of sym-
metry. This flow region is terminated by a transverse
shock (known as a terminating shock) in a similar way
the shock that terminates a supersonic pocket on a super-
critical airfoil®.

Grid:

An O-H grid of 125x85x84 in the wrap-around,
normal and axial directions, respectively, is used for the
computational simulation. The computational domain
extends two-chord length forward and five-chord length
backward from the wing trailing edge. The radius of the
computational domain is fourchord length. Two grids
have been constructed using the same number of grid
points. The first is called the coarse grid and the second
is called the fine grid. For the coarse grid, the grid points
in the cross flow planes have been distributed using a
Joukowski transformation which produces a minimum
grid size, normal to the wing surface, that varies from
Sx10 at the leading edge to 3x1072 at the plane of
symmetry. For the fine grid, the elliptical grid lines in
the cross-flow planes have been constructed such that the
minimum grid size normal to the wing surface, stays
constant at 5x10 from the leading edge to the plane
of symmetry. Figures 1 and 2 show three-dimensional
shape of the coarse and fine grids and a cross-flow plane
along with its blow-ups.

Time-accurate integration of the laminar, unstcady,
compressible, full Navier-Stokes equations has been car-
ried out with At = 0,001 for the coarse grid and At =
0.0002 for the fine grid. The results showed that the
leading-edge vortex core passes through a terminating
shock which causes the vortex core to breakdown. More-
over, it is shown that the flow becomes unsteady behind
the terminating shock.



Validation of Surface Pressure:

Figure 3 shows a comparison of the computed, span-
wise surface-pressure coefficient (C;) at different chord
stations for the fine and coarse grids with the experimen-
tal data of Erickson® (R, = 3.23x10%) and Hartmann
(R, = 2.38x10® and 4.57x10%). The computed results
are selected at t = 3.6. Obviously, the coarse-grid Cp-
curves do not show the suction-pressure peak correspond-
ing to the secondary vortex and the correct location of the
suction-pressure peak corresponding to the primary vor-
tex. The coarse-grid C,-curves are similar to those of the
Euler-equations solution. Therefore, they are discarded
in this paper. The fine-grid Cp-curves show the correct
location of the suction-pressure peak corresponding to the
primary vortex and the suction-pressure peak correspond-
ing to the secondary vortex. The fine-grid C,-curves at
x = 0.3, 0.6 and 0.8 are in fair to good agreement with
the experimental data. For x = 0.9, the fine-grid Cp-
curve shows a substantial, rapid increase in the pressure
coefficient (a decrease in the suction pressure). Figure
4 shows the total-Mach contours and the streamlines in
cross-flow planes at the chord stations of x = 0.3, 0.6, 0.8,
0.9, 0.97 and 1.0. At x =0.3, 0.6 and 0.8, the total-Mach
contours show an oblique shock under the primary vortex
and a small subsonic region to the right of the shock. The
streamlines show the secondary separation to the right of
the shock. This separation is due to the shock interac-
tion with the surface boundary-layer flow and is also due
to the adverse, spanwise pressure gradient created by the
primary vortex. At x = 0.9, the shock under the primary
vortex becomes weak as observed in the total-Mach con-
tours and the primary-vortex size increases. At x = 0.97,
the shock under the primary vortex disappears and the
primary vortex diffuses and reduces to a repelling focus
as shown by the streamlines. At x = 1.0, the repelling
focus becomes a repelling line. The details of the flow
structure shown at x = 0.9, 0.97 and 1.0 indicate that
the primary vortex is going through a breakdown mode
which is caused by a transverse shock (terminating shock)
between x = 0.8 and x = 0.9.

Terminating Shock:

To show that a terminating, transverse shock exists
and has been captured computationally, the static-pressure
contours and total-Mach-contours on two planes are com-
puted and displayed in Fig. 5. In this figure, the static-
pressure contours are shown on the wing surface and
the plane of symmetry, and the total-Mach contours are
shown on the third plane (k = 3) above the wing (in the
viscous layer) and on the plane of symmetry. The plane
of symmetry contours clearly show the location, shape
and strength of the terminating shock. Moreover, the
Mach contours show that a substantial supersonic pockel
(bounded by the sonic line and terminating shock) ex-
tends from the wing vertex to the shock location of x =
0.83, which is in good agreement with the experimental
data®®, where the shock is located at x = 0.84. The com-

puted results show that the shock is a normal shock with
a height of 0.4 which is equal to one-half the wing span.
In the spanwise direction, the shock foot print (shown on
the Mach contours at k = 3) extends beyond the primary-
vortex location. A A-type shape of the shock-system foot
print, which on one side of the wing, consists of the ter-
minating shock and the shock under the primary voriex
that runs along a ray planc from the wing vertex, is seen
on the Mach contours at k = 3.

Figure 6 shows the position of the ray lines from the
wing vertex (which are marked by the leters A-H) and
the static-pressure curves along these lines. The static-
pressure curves show the spanwise locations of several
points on the foot-print line of the terminating shock. The
terminating shock is clearly seen to run in the spanwise
direction from the plane of symmetry to the wing leading
edge. It reaches its highest strength from the location of
the primary vortex to the wing leading edge (from line
E to line H).

Vortex-Breakdown Structure:

Having established the shock system that consists of
the shock under the primary vortex and the terminating
shock, the focus is directed on the structure of the flow be-
hind the terminating shock. In Fig. 7, we show the total-
Mach contours and streamlines on a ray plane at the 0.658
spanwise location, which passes through the leading-edge
vortex core. Blow-ups of the velocity vectors and stream-
lines on this vertical plane are also shown in Fig. 7. The
streamlines figures clearly show a two-bubble cell vortex
breakdown. This is a typical three-dimensional vortex-
breakdown mode which consists of an attracting saddle
point (front) a repelling saddle point (rear), an auracting
focus (top) and a repelling focus (bottom). Such a break-
down mode is similar to the one which was captured for
an isolated supersonic vortex in an unbounded domain
in Refs. 20 and 21. The location of the attracting sad-
dle point is at 0.97 along the ray line, which corresponds
to 0.87 along the axial direction. The attracting focus
point is characterized with spiralling-in streamlines and
the repelling focus point is characterized with spiralling-
out streamlines. The Mach contours show that the front
surface of the vortex-breakdown bubbles is enclosed by a
hemi-spherical shape-like shock surface. Figures 12 and
13 show details of the flow structure on the wing plan
view, on the plane of symmetry and on the ray plane at
the 0.658 spanwise location (marked as J = 16 on Fig. 13).
These figures and discussion give a complete construction
of the flow structure including the shock system and its
interaction with the leading-edge vortex core which pro-
duces vortex-breakdown of the two-bubble-cell mode.

Unsteadiness of the Vortex-Breakdown:

The computations have been carried out with time-
accurate stepping beyond t = 3.6. Figures 8-11 show the
results at t = 5.52. These results show that the terminating
shock moves in the upstream direction and so is the



two-bubble-cell vortex breakdown behind the terminating
shock. Figure 8 shows that the repelling focus is at x =
0.88 instead of x = 0.97 (Fig. 4). Figure 9 shows that
the terminating shock in the plane of symmetry is at x =
0.685 instead of x = 0.83 (Fig. 5). The shock decreases in
helght and its thickness increases. Figure 10 shows that
the size of the two-bubble cell vortex-breakdown region
increases in comparison with the size at t = 3.6 (Fig. 7).
Upstream of the terminating shock the flow stayed steady
without any change.

Beyond the time t = 5.52, the upstream shock motion
stopped and the motion reversed its direction to the down-
stream. The computations were not carried out beyond

this instant due to its impeding cost. The unsteadiness of -

the terminating shock and the vortex-breakdown region
behind it have also been observed experimentally by Ban-
nik and Houtmann®. They also observed that the flow
upstream of the terminating shock stayed steady without
any change. These experimental observations undoubt-
edly support and validate our computational results.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting, finite-volume
scheme to study and construct the flow field structure of
a transonic flow around a 65° sharp-edged, cropped-delta
wing. A A-shock system, which consists of a ray shock
under the primary vortex core and a transverse lerminat-
ing shock, has been captured. Behind the terminating
shock, the leading-edge vortex core breaks down into a
two-bubble cell type. The terminating shock and the vor-
tex breakdown region behind it is time dependent and
appears 10 be oscillatory. The flow field ahead of the ter-
minating shock stays steady without any change. This is
consistent with the fact that the supersonic pocket along
with the terminating shock do not allow disturbances to
propagate upstream. The present results have been vali-
dated using the available experimental data and they are
in good agreement. The present paper gives a complete
construction of the flow field over the wing surface and
in particular the structure of the flow at the terminating
shock and behind it
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Fig. 3. Comparison of the computed and experimental spanwise, surface-pressure
coefficient at different chord stations; Me = 0.85, a = 20°, t = 3.6



Fig. 4. Total-Mach contours and streamlines in cross-flow
planes; My = 0.85, a = 20°, t = 3.6
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Fig. 7. Total-Mach contours, streamlines and velocity vectors on a ray plane passing through
the vortex-breakdown two-bubble cell; Moo = 0.85 a=20°t=36

Fig. 8. Total-Mach contours and streamlines in cross-flow
plane; My = 0.85, a = 20°, t = 5.52
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THREE-DIMENSIONAL SUPERSONIC VORTEX BREAKDOWN

Osama A. Kandil* and Hamdy A. Kandil**
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and
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ABSTRACT

Three-dimensional, supersonic vortex-breakdown prob-
lems in bound and unbound domains are solved. The
solutions are obtained using the time-accurate integra-
tion of the unsteady, compressible, full Navier-Stokes
(NS) equations. The computational scheme is an implicit,
upwind, flux-difference splitting, finite-volume scheme.
Two vortex-breakdown applications are considered in the
present paper. The first is for a supersonic swirling jet
which is issued from a nozzle into a supersonic uniform
flow at a lower Mach number than that of the swirling jet.
The second is for a supersonic swirling flow in a config-
ured circular duct. In the first application, an extensive
study of the effects of grid fineness, shape and grid-point
distribution on the vortex breakdown is presented. Four
grids are used in this study and they show a substantial
dependence of the breakdown bubble and shock wave on
the grid used. In the second application, the bubble-type
and helix-type vortex breakdown have been captured.

INTRODUCTION

Longitudinal vortex/transverse shock-wave interac-
tion is a complex flow phenomenon which develops in
several external and internal flow applications. For exter-
nal flows, the transonic flow around a delta wing in the
high-angle-of-attack range'-? and the transonic and super-
sonic flows around a strake-delta wing configuration in
the moderate to high-angle-of-attack range® are some of
the applications. Vortex-breakdown usually occurs behind
the transverse shock wave over the delta wing resulting in
a loss of lift. Such a breakdown is undesirable and fiow-
control methods need to be developed to eliminate the
voriex breakdown. For internal fiows, the supersonic in-
let ingesting a vortex and the supersonic combustor where
fuel is injected in a swirling jet to enhance fuel-air mixing
are some of the applications. Vortex breakdown behind
the transverse shock wave in these applications is desir-
able since it enhances mixing and stability of the flame*”,
and hence its occurrence need to be cantrolled for opti-
mum performance.

*Professor and Eminent Scholar, Dept. of Mechanical Engincering
and Mechanics, Associate Fellow AIAA.
**Graduate Research Assistant, Member AIAA.
**+Group Leader, Computational Aerodynamics Branch, Associate Fellow
AlAA.
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For such problems, computational schemes are needed
to study, predict and control vortex-shock interaction in-
cluding vortex breakdown. Unfortunately, the literature
lacks this type of analysis with the exception of the pre-
liminary work of Liu, Krause and Menne®, Copening and
Anderson®, Delery, et al.* and Kandil and Kandil®.

The first time-accurate NS solution for a quasi-
axisymmetric supersonic vortex-breakdown was devel-
oped by Kandil, Kandil and Liu in Ref. 10. A supersonic
quasi-axisymmetric vortex flow in a configured circular
duct was considered. The time-accurate solution of the
unsteady, compressible NS equations was obtained us-
ing an implicit, upwind, flux-difference splitting finite-
volume scheme. A shock wave was generated near the
duct inlet and unsteady vortex-breakdown was predicted
behind the shock. The predicted flow was character-
ized by the evolution, convection and shedding of vortex-
breakdown bubbles. The Euler equations were also used
to solve the same problem. The Euler solution showed
larger size and number of vortex-breakdown bubbles in
comparison with those of the NS solutions. The time-
accurate solution was carried out for 3,200 time steps
which were equivalent to a dimensionless time of 16.
Only one value of Reynolds number of 10,000 was con-
sidered in Ref. 10.

In a later paper by Kandil, Kandil and Liu'', the
study of this flow was extended using time-accurate com-
putations of the NS equations with a fine grid in the
shock-vortex interaction region and for long computa-
tional times. Several issues were addressed in that study.
First, the effect of Reynolds number on the temporal evo-
lution and persistence of voriex-breakdown bubbles be-
hind the shock was shown. In that stage of computations,
the conditions at the downstream exit were obtained by
extrapolating the components of the flowfield vector from
the interior cell centers. Although the flow was super-
sonic over a large portion of the duct exit, subsonic flow
existed over a small portion of the exit around the duct
centerline. Therefore, selected flow cases were computed
using Riemann-invariant-type boundary conditions at sub-
sonic points of the duct exit. The effect of swirl ratio at



the duct inlet was also investigated. Recently, the critical
effects of the downstream boundary conditions on the su-
personic vortex-breakdown was extensively investigated
by the same authors'? for both internal and external flows.

In Refs. 10-12, the present authors assumed the flow
quasi-axisymmetric and the NS equations were solved
using the three-dimensional solver “FTNS3D" by forc-
ing the components of the flowfield vector to be equal
on two axial planes in close proximity of each other.
Quasi-axisymmetric solutions are onc-order of magnitude
less in computational cost than the corresponding three-
dimensional solutions, and they still provide substantial
physical understanding of the supersonic vortex break-
down. At this substantially reduced computational cost,
we were able to study the effects of Reynolds number,
swirl ratio and downstream exit-boundary conditions us-
ing time-accurate stepping. However, the previous exper-
imental studies for both incompressible!>-!* and super-
sonic vortex breakdown'® showed that the flow is three
dimensional.

Hence, we consider the three-dimensional solution
of the NS equations to realistically simulate the vor-
tex breakdown problem. The computational solution of
two main vortex-breakdown problems are presented in
this paper: the first is for vortex breakdown of a super-
sonic swirling jet issued from a nozzle into a supersonic
uniform flow at a lower Mach number than that of the
swirling jet, and the second is for vortex breakdown of a
supersonic swirling flow in a configured circular duct. In
the first problem, an extensive study of the effects of grid
fineness, shape and grid-point distribution on the break-
down bubble is presented. Four grids have been used in
the study, and they show a substantial dependence of the
breakdown bubble and shock wave on the grid used. In
the second problem, the time-accurate solution shows two
modes of supersonic vortex breakdown; a bubble type
and a spiral type.

HIGHLIGHTS OF THE FORMULATION
AND COMPUTATIONAL SCHEME

The conservative, unsteady, compressible, lami-
nar full Navier-Stokes equations in terms of time-
independent, body-conformed coordinates £!, £? and &3
are used to solve the problem. The equations are given
in Ref. 11 and hence they are not shown here. Along
with these equations, boundary conditions are specified
al the computational-domain inlet, side wall and down-
stream exil. The boundary conditions are presented in the
next section. The initial conditions will also be presented
in the next section.

The computational scheme used to solve the unsteady,
compressible full NS equations is an implicit, upwind,
flux-difference splitting, finite-volume scheme. It em-
ploys the flux-difference splitting scheme of Roe which is
based on the solution of the approximate one-dimensional
Riemann problem in each of the three directions. In the

Roe scheme, the inviscid flux difference at the interface
of a computational cell is split into left and right flux dif-
ferences. The splitting is accomplished according to the
signs of the cigenvalues of the Roe averaged-Jacobian
matrix of the inviscid flux at the cell interface. The
smooth limiter is used to eliminate oscillations in the
shock region. The viscous and heat-flux terms are lin-
carized and the cross-derivative terms of the viscous Ja-
cobians are dropped in the implicit operator. These terms
are differenced using second-order spatiatly accurate cen-
tral differencing. The resulting difference equation is ap-
proximately factored and is solved in three sweeps in the
€', € and & directions. The scheme is coded in the
computer program which is called “FTNS3D".

COMPUTATIONAL RESULTS AND DISCUSSION

1. Three-Dimensional Vortex Breakdown of
a Supersonic Swirling Jet

A supersonic swirling jet at a Mach number of M; =
3.0 is issued from a nozzle into a supersonic uniform flow
at a Mach number of M. = 2.0. The freestream Reynolds
number, R,, is 296,000. The nozzle-exit radius is the
characteristic length and the length of the computational
domain is 7.0 dimensionless units. The purpose of the
present computational case is to simulate the flow of the
experimental study of Ref. 16. It was reported in Ref. 16
by Metwally, et al. that it was difficult to detect any
voriex-breakdown bubble behind the formed shock in the
swirling jet flow and that the shock was oscillating around
a mean position. For the present computational study, it
is decided to use four types of structured grids to solve the
unsteady, compressible NS equations accurately in time.
The cross-section of the computational domain is taken as
a square section for three types of grid which are called
Grid type 1, 2 and 3. For the fourth grid, Grid type 4, a
circular section is used. For Grid types 1, 2 and 3, the
length of one-half the square-section side is 3.5 units and
for Grid type 4, the radius length of the circular section
is 3.5 units. A time step of 0.02 is used for all the four

types of grids.

1.1 Boundary and Initial Conditions: The inflow bound-
ary conditions are adaptied from the limited experimen-
tal data of Ref. 16. Unfortunately, the experimental data
available in Ref. 16 are given along one diameter only
of the circular section. The profiles of the experimen-
tal data are not symmetric with respect to the diameter
center point. To produce three-dimensional profiles from
the experimental data, two methods are used. In the first
method, the asymmetry of the experimental profiles is
maintained by assuming the profiles on the right-hand
side of the initial cross-section to be the same as those of
the upper half of the experimental data and the profiles
on the left-hand side of the initial cross-section to be the
same as those of the lower half of the experimental data.
In the second method, the initial cross-section profiles are
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assumed to be quasi-axisymmetric and are set equal to the
profiles of the upper half of the experimental data. The
average swirl ratio of the asymmetric profiles is 0.2 and
the swirl ratio of the quasi-axisymmetric profiles is 0.22.
The experimental data are used for r < 1, and for 1 <
r € 3.5 uniform wind-tunnel conditions corresponding to
M_. = 2.0 are used. Figures 1 and 2 show the generated
asymmetric and quasi-axisymmetric distributions of the

axial velocity, 4, tangential velocity v, density, p, and -

pressure, p.

The boundary conditions on the outer boundaries of
the computational domain are assumed to be uniform
conditions corresponding to M, = 2.0.

The outflow boundary conditions at the exit of the
computational domain are obtained by extrapolating all
the flowfield components from the interior cell centers
at the exit. This is justified since the experimental data
of Ref. 16 show that the flow becomes supersonic a few
radii downstream of the shock/vortex interaction region.

The initial conditions in the entire domain correspond
to freestream conditions at Mo = 2.0. Hence, the present
flow case simulates a sudden discharge of a swirling
supersonic jet from a nozzle into a uniform supersonic
flow.

1.2 Grid Type 1: A rectangular grid of 210x51x51
points in the axial (x direction) and cross-flow directions
(y and z directions), respectively is considered. The grid
points are clustered in the axial direction near the inflow
boundary and near the vortex-core axis. The minimum
grid size is 0.057 in the y and z directions and 0.0147
in the x direction. Figure 3 shows a side view and a
cross-flow plane of the grid.

In Fig. 4, snapshots of the streamlines on a horizon-
tal plane passing through the computational domain axis
and the total Mach contours on the same plane are given
at selected dimensionless times. At t = 2.0, the Mach
contours show the existence of a strong shock wave at
the centerline. The shock is formed due to the mismaich
between the static pressures of the supersonic swirling
jet and the supersonic uniform surrounding flow. Behind
the shock wave, the streamlines indicate the existence
of a reversed flow region. At t = 3.0, the recirculating
bubble-flow grows in size and moves upstream. The for-
mation of a two-bubble cell is clear. The Mach contours
show that the shock also moves upstream ahead of the
two-bubble cell. At t = 4.0 and 5.0, the shock wave and
the two-bubble cell still move upstream while the bubbles
are growing in size. The bubbles reach their maximum
size at t = 5.0. The snapshots of the solution for t 2 10.0
show that the bubble-shock system is quasi-steady and
oscillating around a mean axial location. The maximum
change in the bubble size is less than 10%. The axial ve-
locity recovers its supersonic values at the exit boundary,
and hence the use of extrapolation boundary conditions
is justified.

L3 Grid Type 2: This grid consists of 145x61x61
points in the axial and cross-flow directions, respectively.
The grid points are redistributed to obtain better solution
of the vortex core and the vortex-shock interaction region.
The minimum grid size is 0.024 in the y and z directions
and 0.014 in the axial direction. Figure 5 shows a side
view and a cross-flow plane of the grid.

In Fig. 6, snapshots of the streamlines and total Mach
contours on a horizontal plane passing through the com-
putational domain axis are given at selected dimension-
less times. At t = 2.0, a two-bubble cell is formed behind
a sharply oblique conical shock. The bubbles sizes are
larger than those of Grid type 1 at the same time level.
At t = 3.0, the two-bubble cell grows in time and moves
upstream along with the shock wave. Again, the bubbles
are larger in size and closer to the inflow boundary than
those of Grid type 1. Moreover, it is interesting to notice
that the bubbles are longer in the axial direction than their
length in the lateral direction in comparison with those of
Grid type 1. It should be noted here that the number
of grid points around the computational domain axis for
the present grid is larger than those of Grid type 1 and
the number of grid points in the axial direction is less
than those of Grid type 1. Att = 4.0, the two-bubble cell
moves downstream, another small bubble appears and the
shock splits into two shocks; a weak shock which is fol-
lowed by a strong shock surrounding the bubbles. Att
= 5.0, the shock shape changes to become more oblique
and the two-bubble cell grows slightly. As the solution is
advanced in time, it is observed that continuous changes
in the bubbles size, shape and location occur with larger
amplitudes than those of Grid type 1. For t 2 10.0, the
bubbles show highly unsteady flow with an oscillating
shock wave.

1.4 Grid Type 3: In this grid, the number of grid points
is kept the same as that of Grid type 2. The grid points are
redistributed in the axial and cross-flow directions. In the
axial directions, 90 grid points are used in the range of x
=0 to 2.0, in comparison with 71 grid points in Grid type
2. The minimum cell size in the axial direction is 0.0084.
In the cross-flow plane, the grid points are redistributed
such that the grid aspect ratio does not exceed 4.0. Figure
7 shows the grid and Fig. 8 shows the results.

The results show that at t = 2.0, a small bubble is
captured off the computational domain axis. Later on,
at t = 4.0, the small bubble disappears. Another bubble
is captured at t = 6.0 and it also disappears later on.
For t > 8.0, no more bubbles are captured. A strong,
almost-normal shock is captured around the axis. It is
located a little more downstream from the inflow section
in comparison with that of Grid type 2.

Next, it is decided to use the quasi-axiSymmetric ini-
tial profiles (Fig. 2) which have higher swirl ratio than
those of the asymmetric initial profiles (Fig. 1). The re-
sults are shown in Fig. 9. The resulis show the formation
of a small two-bubble cell. The bubbles shape changes



slowly with time and the shock oscillates with very small
amplitude around a mean position which is a little more

downstream than that of the previous case and the case -

of Grid type 2.

1.5 Grid Type 4: A circular grid consisting of 145x61 x
49 points in the axial, radial and circular directions, re-
spectively, is used. The grid points are clustered around
the axis for a good resolution of the vortex core and
around r = 1 for good resolution of the shear layer be-
tween the swirling jet and the uniform freestream flow.
In the axial direction, the grid points are distributed as
those of Grid type 3. The circular grid has the advan-
tage of offering better resolution near the axis, where it
is needed. Moreover, with the circular grids, the number
of grid points along a diameter in the cross-flow plane
is doubled without increasing the total number of grid
points, in comparison with the previous grids of square-
section cross-flow planes. Figure 10 shows the circular
grid.

As in the case of Grid type 3, two sets of initial
profiles; namely the quasi-axisymmetric and asymmetric
profiles, are used with this grid. As with Grid type 3
and for the asymmetric initial profiles, a small bubble is
formed behind the shock and disappears afier a few time
steps.

Figure 11 shows snapshots of the streamlines and
Mach number contours for the quasi-axisymmetric initial
profiles. The results show the formation of a mult-
bubble vortex breakdown behind the central strong part of
the shock system. A two-bubble cell is then established
and persists for the rest of the computational time. The
relative size of the two bubbles is continuously changing
and the global picture is looked at as a quasi-steady one.

This study exclusively shows why it was very difficult
10 see any vortex-breakdown bubbies as was reported in
Ref. 16. It is understood now in view of the results of
the four grids that the size of the bubbles are either very
small to be seen for quasi-axisymmeitric initial profiles or
they are transient bubbles for asymmetric initial profiles.

II. Three-Dimensional Supersonic Vortex
Breakdown in a Configured Duct

The computational domain consists of a configured
circular duct with a total length of 2.9 dimensionless umnits,
where the duct radius is used as a characteristic length.
The duct consists of a constant diameter cylindrical por-
tion of radius one followed by a divergent portion which
is intended to stabilize the formed shock wave, a constant
cylindrical part and finally a convergent-divergent nozzle
which is intended to accelerate the exhaust flow to su-
personic speeds. The grid consists of 200x51x49 grid
points in the axial, radial and circumferential directions,
respectively. The grid points are clustered near the inlet
section in the axial direction for a good resolution of the
shock and the shock/voriex interaction region, and in the

cross-fiow plane around the duct axis for a good resolu-
tion of the vortex core. The gird points are also clustered
near the duct walls for a good resolution of the bound-
ary layer. The minimum cell size is 0.002. Figure 12
shows the computational grid. The freestream conditions
correspond to M, = 1.75 and Reynolds number of 10°.

11.1 Boundary and Initial Conditions: The initial pro-
file for the tangential velocity is given by

v k. r?

7= [ e r?..)] ®
whan =174, r, = 0.2 and k, = 0.1. The max-
imum &, swirl ratio 3, is at r = 0.224 and its value is
kept at 0.32. The radial velocity, w, at the initial station
is set equal 10 zero and the radial momentum equation is
integrated to obtain the initial pressure profile. Finally,
the density p is obtained from the definition of the speed
of sound for the inlet low. With these compatible set
of profiles, the computations are carried out accurately in
time with At = 0.0025 for two computational applica-
tions. The duct-wall boundary conditions follow the typ-
ical Navier-Stokes solid-boundary conditions for the first
case. For the second case, inviscid duct-wall boundary
conditions are used to reduce the effect of the boundary-
layer separation on the vortex breakdown process. The
downstream exit-boundary conditions are obtained by ex-
trapolating the fiowfield components from the interior cell
centers at the exit.

The initial conditions correspond to stagnation condi-
tions throughout the interior computational domain.

I1.2 Viscous Duct-Wall Boundary Conditions: Figure
13 shows snapshots of the solution at selected time levels.
At t = 2.0, a small recirculating region is formed behind
the strong normal part of the shock wave. Two stagna-
tion points are recognized along the duct axis. The total
Mach number contours show the position of the shock
front near the inflow section and the position of the re-
circulation zone behind the shock wave. As the com-
putations is advanced in time, the bubble size grows in
the axial and radial directions and the shock-bubble sys-
tem moves downstream. At t = 3.5, it is noticed that the
bubble size grows and the shock wave is deformed ac-
cordingly. The solution is quasi-axisymmetric as shown
by the streamlines and Mach number contours. Starting
at 1 = 4.0, the bubble size grows in the lateral direction,
moves upstream towards the inflow boundary pushing the
shock wave upstream. Small flow asymmetry is also no-
ticed. For t 2 5.5, another phase of the solution history
develops, where a reversed normal shock is formed inside
the vortex-breakdown bubble (see Mach contours at t =
6.0). The normal shock wave turns the reversed flow to
subsonic. As the computations advance in time, the bub-
ble system starts 10 move downstream towards the duct
exit with a new recirculating region formed behind the
shock wave. The flow becomes quite asymmetric.
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At t = 115, as the computations advance in time,
some of the features noticed experimentally for incom-
pressible vortex fiows in pipes could be recognized; e.g.,
the asymmetric voriex breakdown seen at t = 11.5. The
streamlines clearly show the spiral-type of vortex break-
down and the asymmetric shedding of the vortex break-
down bubbles. It should be noted here that such phe-
nomenon was not captured using the quasi-axisymmetric
assumption in Ref. 11 by the present authors. The shed-
ding of the vortex-breakdown bubbles continues as new
bubble systems were formed behind the shock wave. At
t = 16.5, the shedding of two asymmetric bubbles can be
seen and a two-bubble system is formed upstream along
with a very small recirculating region just downstream
of the central part of the shock wave. Att= 19, itis
observed that two bubbles merge together while they are
convected and shed.

An important parameter affecting the flow in the duct
is the interaction of the shock with the boundary-layer
flow on the duct wall. This causes the separation of
the wall boundary layer, as can be seen at t = 31, 42
and 43. The Mach number contours show the separation
of the boundary as a result of the interaction with the
shock wave, and the streamlines show the reduction in the
vortex-breakdown-bubble size as a result of the boundary-
layer thickening. The shedding of the inclined vortex
rings shown at t = 33 is similar to the spiral type of
vortex breakdown, where the upper part of the vorex
rings rotates in the clockwise direction and the lower part
rotates in the opposite direction. A new vortex ring is
formed behind the shock while the spiral-like system is
moving downstream.

As the solution is advanced in time, the size of the
breakdown region is reduced in the radial direction as
a result of the boundary-layer thickening. An interesting
breakdown mode is shown at | = 38.5 where a bubble-type
vortex breakdown followed by a spiral-type is formed
downstream of the shock wave. This phenomenon was
observed in the experimental studies of Sarpkaya'® and
has never been captured computationally.

The reduction of the breakdown-region size continues
with the advance in the time as can be seen at t = 41, 42
and 44. At t = 46, no recirculation zone is observed
and the vortex-breakdown system is dissipated totally.
It is also observed that the shock-wave system moves
continuously in the downstream direction as of t > 31.

113 Inviscid Duct-Wall Boundary Conditions: The
effect of the shock/boundary-layer interaction at the duct
wall is further investigated by treating the duct wall as an
inviscid wall. At t = 43.0, inviscid-wall boundary condi-
tions are applied at the duct wall with all the other bound-
ary conditions remaining the same. Samples of the results
are shown in Fig. 14. At t = 43.5, the vortex-breakdown
bubbles are recovered and the shock wave becomes nor-
mal to the duct wall. The shedding of the vortex rings
continues as the solution is advanced in time as can be

seen at t = 45.5, where the vortex rings are recognized.
It is also noticed that the vortex-breakdown bubble size
starts to increase in the radial direction. Further increase
in the breakdown-region size is noticed at t = 47. It is also
noticed that the position of the shock wave with respect to
the duct inlet is fixed while the shape of the central part
is continuously changing according to the shape of the
bubbles behind the shock. The shedding of the voriex-
breakdown bubbles continues in an asymmetric form as
can be seen at t = 63, 69 and 72.5. It is interesting 0
notice that the vortex-breakdown system survives and is
not dissipated as in the case of viscous duct wall. The
computations is advanced untit t = 75 without any sign
of dissipation of the vortex-breakdown-bubbles. It is con-
cluded that the disturbances caused by the wall boundary-
layer separation are the reason behind the disappearance
of the vortex-breakdown system in the case of viscous
duct wall. This might be caused by the pressure gradi-
ents resulting from the change in the vortex-core outer
boundaries.

Sarpkaya!? noticed that the boundary-layer separation
and reversed flow occurred on the tube wall in the case
of a swirling incompressible flow in a divergent tube. He
suggested that the bubble pressure gradient caused by the
tube divergence and that caused by the voriex breakdown
are the reasons behind the separation. He concluded that
the viscous effects on vortex breakdown in tubes are very
significant and that, because of the flow separation, a bet-
ter simulation of the voriex breakdown is not likely 10
emerge from solving numerically the full Navier-Stokes
equations even if the problems of numerical instability
were 1o be solved. In the case of supersonic voriex break-
down, the problem is much more involved because of the
shock/boundary layer interaction and the assumption of
inviscid walls seems to isolate the wall viscous effects.

CONCLUDING REMARKS

Three-dimensional, supersonic vortex-breakdown flows
in bound and unbound domains are simulated compu-
tationally using the time-accurate solution of the un-
steady, compressible, laminar, full Navier-Stokes equa-
tions. Two main vortex-breakdown applications are con-
sidered in this paper. The first application is for a su-
personic swirling jet issued in a supersonic uniform flow
at a lower Mach number. This flow case was consid-
ered earlier by Metwally and his co-workers in Ref. 16,
where it was reported that no vortex breakdown bubble
was seen behind the shock-wave system. A systematic
computational investigation was carried out using four
types of grids which ranged from coarse- to find-grid dis-
tributions and from rectangular to circular grid lines in
the cross-flow planes. It has been shown that the coarse
grid produces large vortex bubbles and the fine girds pro-
duce either transient small vortex bubbles or quasi-steady
small vortex bubbles. Using the fine-grid results as the
ones closely representing the experimental flow case, it
is understood why Metwally, et al.!® were not able to see



any vortex-breakdown bubble. The bubbles were cither
small or small and transient. Moreover, this study shows
why previous investigators'™!* of incompressible vortex-
breakdown flows were able to produce numerical results
using coarse grids (coarser than the coarse grid used in the
present paper) at low Reynolds numbers which were com-
parable to experimental results at high Reynolds numbers.
It is now understood that coarse grids have made it pos-
sible t0 simulate experimental results at high Reynolds
number.

The second application is for a supersonic swirling
fiow in a configured circular duct. Here, the duct-wall
boundary conditions are used once for a viscous wall
and another for an inviscid wall. With the viscous-wall
boundary conditions, it has been observed that the vor-
tex breakdown is transient and it has been dissipated by
the effect of separated flow from the duct-wall bound-
ary layer. However, during the transient formation of
vortex-breakdown flows, both the bubble-type and spiral-
type vortex breakdown are captured. Spiral-type vortex
breakdown was not captured in Ref. 11 by the present
authors due to the quasi-axisymmetric assumption used.
With the inviscid duct-wall boundary conditions, the vor-
tex breakdown is persistent and does not dissipate. The
three-dimensional relieving effect on the vortex break-
down modes is apparent from the present results when
they are compared with those of Ref. 11, where the quasi-
axisymmetric assumption has been used.
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| Fig. 3. Grid. type 1 (rectangular coarse grid in the cross-flow plane),
210x51x 51 grid points in the axial and cross-flow plane, respectively.
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Fig. 13. Sweamlines and Mach contours in a horizontal plane for a super-
sonic swirling flow in a circular duct, M, = 1.75, 8 = 0.32 and
R, = 100,000, viscous wall.
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Fig. 14. Streamlines and Mach contours in a horizontal plane for a super-
sonic swirling flow in a circular duct, M = 1.75, # = 0.32 and
R, = 100,000, inviscid wall.
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Abstract—Existing numerical simulations and physical aspects of subsonic and supersonic vortex-break-
down modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized
in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical
simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects
of different types of downstream-exit boundary conditions are studied and discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex breakdown has been observed along the primary
leading-edge vortex cores of a delta wing. Two distinct forms of vortex breakdown have been
documented experimentally [1]. The first form is the bubble type, and the second is the spiral type.
The bubble type shows a sudden, nearly axisymmetric swelling of the vortex core into a bubble;
the spiral type shows an asymmetric spiral vortex filament, which is followed by a rapidly spreading
turbulent flow. Both types of breakdown are characterized by an axial stagnation point and a
limited region of reversed axial flow. Much of our knowledge of vortex breakdown has been
obtained from experimental studies of incompressible flows in pipes, where both types of
breakdown (and other types as well) are generated and documented [2-4].

The major effort in the numerical studies of vortex-breakdown flows has been focused on
incompressible, quasi-axisymmetric isolated vortices. Grabowski and Berger [5] were the first to use
the incompressible, quasi-axisymmetric Navier-Stokes (NS) equations to study isolated vortex flow
in an unbounded region. Hafez er al. [6] solved the incompressible, steady, quasi-axisymmetric
Euler and NS equations with the stream function—vorticity formulation for isolated vortex flows.
They predicted vortex-breakdown flows similar to those of Garbowski and Berger [5]. Salas and
Kuruvila [7] solved the unsteady, quasi-axisymmetric NS equations in a straight circular pipe and
obtained steady. multiple-bubble vortex breakdown for the Reynolds number, Re (based on the
pipe diameter), range 100-1800. Menne [8] has also used the stream function-vorticity formulation
for studying unsteady, incompressible quasi-axisymmetric isolated vortex flows. Wu and Hwang (9]
used the stream function—vorticity formulation to study quasi-axisymmetric vortex breakdown in
a pipe. Their study focused on the effects of inflow conditions, wall boundary conditions and Re
on breakdown structure. They showed that the evolution of breakdown can be steady, periodic
or unsteady, dependent on the inflow velocity profiles and Re. Menne and Liu [10] integrated the
laminar, incompressible NS equations for breakdown of a vortex in a slightly diverging pipe. They
showed breakdown flow cases that are based on the purely quasi-axisymmetric and nonaxisymmet-
ric analyses. The results were in good agreement with the experimental results of Leibovich [4]. Spall
et al. [11] used the vorticity—velocity formulation of the incompressible NS equations to study
three-dimensional vortex breakdown. Breuer and Hinel [12] solved the unsteady incompressible
NS equations with a dual time-stepping, upwind scheme to study the temporal evolution of the
three-dimensional vortex breakdown. In Refs [11, 12], both types of breakdown (the bubble and
the spiral type) were predicted. Reviews of the physical and computational aspects of the
incompressible vortex breakdown have been presented by Krause [13, 14]. One of the most
important aspects of vortex breakdown, which Krause discusses in Ref. [14], is the effect of side-wall
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boundary conditions on the upstream or downstream motion of the breakdown point. Also, he
discusses different outflow boundary conditions.

Longitudinal vortex and transverse shock-wave interactions are typical phenomena that appear
in transonic and supersonic flows over strake-wing configurations at moderate to high angles of
attack, at a supersonic inlet as a vortex is injested and inside a supersonic combustor where fuel
is injected in a swirling jet to enhance fuel-air mixing [15-17]. For the strake-wing configuration,
vortex breakdown is undesirable because the stall phenomenon results; hence, its occurrence must
be delayed. On the other hand, vortex breakdown for the other two applications is desirable
because it enhances the mixing of air and fuel and stability of the flame [18, 19]; hence, its
occurrence must be controlled for optimum performance. Unfortunately, the literature lacks this
type of analysis, with the exception of the preliminary work of Liu er al. [29], Copening and
Anderson [21], Delery er al. [15]), Kandil and Kandil [22] and Meadows er al. {23].

The first time-accurate, NS solution for a supersonic vortex breakdown was developed by Kandil
et al. [24). A supersonic quasi-axisymmetric vortex flow in a configured circular duct was
considered. The time-accurate solution to the unsteady, compressible NS equations was obtained
with an implicit, upwind, flux-difference splitting, finite-volume scheme. A shock wave was
generated near the duct inlet and unsteady vortex breakdown was predicted behind the shock. The
predicted flow was characterized by the evolution, convection and shedding of vortex-breakdown
bubbles. The Euler equations were also used to solve the same problem. The Euler solution
predicted increases in both the size and number of vortex-breakdown bubbles, in comparison with
the NS solutions. The time-accurate solution was carried out for 3200 times steps, which was
equivalent to a dimensionless time of 16. A single Re value (10,000 based on the inlet radius) was
considered in that study [24].

In a later paper [25], the study of this flow was extended with time-accurate computations of
the NS equations with a fine grid in the shock-vortex interaction region and for longer
computational times. Several issues were addressed in that study. First, the effect of Re on the
temporal evolution and persistence of vortex-breakdown bubbles behind the shock was shown. In
that stage of the computations, the conditions at the downstream exit were obtained by
extrapolating the components of the flow-field vector from the interior cell centers. Although the
flow was supersonic over a large portion of the duct exit, subsonic flow existed over a small portion
of the exit around the duct centerline (CL). Therefore, selected flow cases were computed with
Riemann-invariant boundary conditions at the subsonic points of the duct exit. The effect of swirl
ratio at the duct inlet was also investigated.

Recently, the critical effects of the downstream boundary conditions on the supersonic vortex
breakdown have been investigated extensively by the same authors [26] for both internal and
external flows.

In the present paper, the numerical simulation of supersonic vortex-breakdown flows for
bounded and unbounded domains are reviewed. The effects of Re, swirl ratio and downstream-exit
boundary conditions are considered and discussed along with certain physical and numerical issues.

OVERVIEW OF THE FORMULATION AND COMPUTATIONAL SCHEME

- The conservative, unsteady, compressible, full NS equations, in terms of the time-independent,
body-conformed coordinates ¢!, £2 and £ have been used to solve the problem. The equations are
given in Ref. [25] and are not shown here. With these equations, boundary conditions are specified
at the computational domain inlet, side wall and downstream exit. The downstream-exit boundary
conditions are presented and discussed in the next section. The initial conditions will also be
presented in the next section.

The computational scheme used to solve the unsteady, compressible, full NS equations is an
implicit, upwind, flux-difference splitting, finite-volume scheme. This scheme employs the flux-
difference splitting scheme of Roe, which is based on the solution to the approximate one-dimen-
sional Riemann problem in each of the three directions. In the Roe scheme, the inviscid flux
difference at the interface of a computational cell is split into left and right fiux differences. The
splitting is accomplished in accordance with the signs of the eigenvalues of the Roe averaged-
Jacobian matrix of the inviscid flux at the cell interface. The smooth limiter is used to eliminate
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oscillations in the shock region. The viscous and heat-flux térms are linearized and the cross-
derivative terms of the viscous Jacobians are dropped in the implicit operator. These terms are
differenced with second-order, spatially-accurate central differencing. The resulting difference
equation is approximately factored and is solved in three sweeps in the ', {? and ¢® directions.
The scheme is coded in the computer program “FTNS3D”.

The quasi-axisymmetric solutions are obtained with the three-dimensional code by forcing the
flow-field vectors to be equal on two axial planes, which are in close proximity to each other.
Quasi-axisymmetric solutions reqzlire 1 order of magnitude less in computational time than the
three-dimensional solutions. They still provide substantial physical understanding of the supersonic
vortex breakdown and the dominant parameters that affect it.

COMPUTATIONAL RESULTS AND DISCUSSION

Vortex Breakdown in a Configured Circular Duct

Figure 1 shows a configured circular duct with a short, straight cylindrical part at the inlet which
is followed by a short divergent cylindrical part until the axial length of 0.74 dimensionless unit,
where the duct inlet radius is the characteristic length. The divergence angle is 6°. The duct radius
is then kept constant and a convergent—divergent nozzle with a throat radius of 0.95 is attached.
The duct exit radius is 0.98 and its total length is 2.9. The divergent part of the duct ensures that
the formed shock stays in the inlet region. The overall configuration of the duct ensures that the
supersonic inflow becomes supersonic at the exit. As the computations will show, a small portion
of the duct exit flow near its CL becomes subsonic at certain times for the specified inflow
conditions. This configured duct has also been used by Delery.et al. [15] for the Euler equation
computations of supersonic vortex breakdown to computationally model their experimental setup.

The NS solver uses a grid of 221 x 51 grid points on two axial planes, where 221 points are in
the axial direction and 51 points are in the radial direction. In the inlet region up to the 0.74 axial
station, 100 grid points are used; the other 121 points are used in the remaining part of the duct.
The grid is also clustered at the CL and the wall. The minimum radial grid size at the CL is 0.002.
The two axial planes are spaced circumferentially at a prescribed angle so that the aspect ratio of
the minimum grid size will be < 2. The present grid size and distribution resulted from initial studies
of their effect on the accuracy of the solution. The upstream Mach number is supersonic and is
kept at 1.75. The initial profile for the tangential velocity is given by

v k. r?
et 2]

where U, = 1.74, r,, =0.2 and k. =0.1. The maximum v/U, (swirl ratio f) is at r =0.224. The
radial velocity w at the initial station is equal to zero, and the radial momentum equation is
integrated to obtain the initial pressure profile. Finally, the density p is obtained from the definition
of the speed of sound for the inlet flow. With this compatible set of profiles, the computations are
carried out accurately in time with Az = 0.0025. The wall boundary conditions follow the typical

fip = 1.0 & Ith = 0.95-rex = (0.98
CL —
—-—0.0
0.008 2500

Fig. 1. Grid of the configured duct (221 x 51).
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Fig. 2. Streamlines and Mach contours for swirling flow with transient singie-bubble breakdown; with
M, =1.75, B =0.32 and Re =4,000.

NS solid boundary conditions. These computations have been carried out on the CRAY 2 at NASA
Langley Research Center. The CPU time is 28 us per grid point per iteration for the NS calculations.

Next, we present the results of the computational study on the effects of Re, exit boundary
conditions and swirl ratio.

Effect of Re

The effect of Re on the vortex-breakdown modes is studied by varying Re between 2000 and
100,000. The Re is based on the radius of the duct inlet. The swirl ratio is kept fixed at 0.32 and
the downstream-exit conditions are obtained by extrapolating all of the flow variables from the
cell centers at the exit.

For Re = 2000, a shock is captured at the duct inlet, but no vortex breakdown is detected. The
flow at the exit boundary is supersonic.

Fig. 3. Streamlines for swirling flow with transient multibubble breakdown; with M, = 1.75, § = 0.32 and
Re = 20,000.
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For Re = 4000, Fig. 2 shows snapshots of the streamlines and Mach contours of the solution.
For this Re, a single breakdown bubble is seen at 1 = 5 and is convected downstream as time passes.
This breakdown bubble is formed during the downstream motion of the inlet shock, which reaches
its maximum downstream displacement at ¢ = S. Later on, the shock moves upstream (as is seen
at t = 8) and the breakdown bubble is convected in the downstream direction. Thereafter, the shock
stays stationary at the inlet and no vortex-breakdown bubbles are formed behind the shock. This
swirling flow case shows a transient single-bubble breakdown flow.

For Re = 20,000, Fig. 3 shows snapshots of the streamlines and Mach contours of the solution.
These snapshots show a vortex-breakdown mechanism of evolution, convection, merging and
shedding of bubbles, and the inlet shock first moves downstream, then upstream and finally
downstream. Thereafter, the inlet shock becomes stationary, and no bubbles are formed behind
the shock. This swirling flow case shows a transient multibubble breakdown flow.

For Re = 100,000, Fig. 4 shows snapshots of the streamlines and Mach contours of the solution.
The streamline snapshots show multibubble vortex-breakdown evolution, convection, merging and
shedding. The time-accurate integration was carried out up to 7 = 200, and the solution showed
periodic multifrequency cycles of vortex-breakdown bubbles. An example of the merging of
vortex-breakdown bubbles of the same sign of vorticity is shown at ¢ = 17. An example of the

Fig. 5. Enlargement of streamlines of periodic multifrequency, multibubble breakdown; with ¢ =84
and 87.
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convection and shedding of vortex-breakdown bubbles is shown at ¢ = 25. In a comparison of the
streamline solutions at ¢ = 25 and 89, the solutions are almost identical. This result conclusively
shows that the breakdown process is periodic. The Mach contours show the dynamics of inlet shock
motion. In the time range 3 < ¢ < 8, the inlet shock moves upstream toward the inlet, and its central

r = 0.81

Fig. 6. Streamlines and Mach contours for swirling fiow with periodic multibubble, multifrequency
vortex breakdown; with p, = 2p.. Riemann-invariant boundary conditions, M_ = 1.75, § =032 and
Re = 100,000.
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portion moves outside the inlet section at 1 = 8. In the time range 8 < 7 < 25, the inlet shock moves
downstream with corresponding evolution, convection, merging and shedding of breakdown
bubbles. In the time range 25 < < 45, the inlet shock maintains its motion in the downstream
direction at a slower rate than before, while another shock, which is downstream of the inlet shock,
appears and also moves in the downstream direction. The evolution, convection and shedding

Fig. 7. Streamlines and Mach contours for swirling flow with transient multibubble vortex breakdown;
with dp/0x = ¢, Riemann invariant boundary conditions, M_ = 1.75, 8 =0.32 and Re = 100.000.
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slowly continue until # = 66. In the time range 66 < ¢ <78, the downstream shock disappears, and
a large vortex-breakdown bubble appears and moves upstream. This motion of the bubble is
accompanied by upstream motion of the inlet shock (z =78). Later, the inlet shock again moves
in the downstream direction, and the process is repeated. An animated movie has been produced
to show the breakdown modes until a total dimensionless time of ¢ = 200.
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Fig. 8. Streamlines and Mach contours for swirling flow with quasi-steady breakdown: with M, = 1.75,
B =0.32 and Re = 100,000.
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Figure 5 shows an enlargement of two snapshots of the streamline solutions at ¢ = 84 and 87.
At 1 = 84, five vortex-breakdown bubbles spatially alternate in their sign of vortex strength. Six
stagnation points exist at the axis. At t = 87, seven vortex-breakdown bubbles and seven stagnation
points can be seen. The figure shows the merging of two bubbles of same sign of vorticity. This
swirling flow case shows a periodic multifrequency, multibubble breakdown flow.

Effect of the type of boundary conditions at the exit

In the present study, the downstream-exit boundary conditions at the subsonic points are replaced
by using the Riemann-invariant boundary conditions. The Riemann-invariant boundary conditions
at the subsonic points are applied with three different values of pressure, called the back pressure
Ppy: for the first value, p, = p,; for the second value, p, = 2p_; and for the third value, p, is obtained
from dp,/dx = const. The other four flow variables are extrapolated from the interior cell centers
at the duct exit. The Re and f are fixed at 100,000 and 0.32, respectively.

For p, = p,, up to t = 35, the solution is the same as that where the exit boundary conditions
are extrapolated from the cell centers. (See Fig. 4.) Thereafter, for ¢ > 35, the inlet shock
continuously moves in the downstream direction and the vortex-breakdown bubbles move ahead
of the shock. The shock and vortex bubbles are shed and disappear from the duct at advanced
levels of time. The breakdown mode is termed as a transient multibubble vortex breakdown. The
shock/vortex-breakdown/bubble system disappears because the back pressure is too low to support
the inlet shock sufficiently to keep it in the inlet region. Moreover, the Riemann-invariant boundary
conditions at subsonic points allow the downstream effects to propagate upstream as time increases.

For p, = 2p,., Fig. 6 shows snapshots of the streamlines and Mach contours of the solution. A
comparison of the present solution with the solution in Fig. 4 shows that the two solutions are
similar, except that the present solution lags that of Fig. 4 in time. The reason for this lag is that the
back pressure p, of the present case is larger than that shown in Fig. 4. Moreover, the
Riemann-invariant conditions at subsonic points allow the downstream effects to propagate
upstream as time increases. The large back pressure, which is felt upstream, supports the inlet shock
and keeps it in the inlet region.

For dp,/0x = const, Fig. 7 shows snapshots of the streamlines and Mach contours of the solution.
A comparison of the present solution with the solution in Fig. 4 shows that thé two solutions are
similar until ¢+ = 22. Thereafter, for 1 > 22, the inlet shock continuously moves in the downstream
direction with the vortex-breakdown bubbles moving ahead of the shock. Again, as in the case
of p, =p., the shock and vortex bubbles are shed and disappear from the duct at advanced
levels of time. The breakdown is a transient multibubble vortex breakdown. The shock/vortex-break-
down/bubble system disappears because the back pressure obtained from the dp,/0x = const condition
is too low to support the inlet shock and keep it in the inlet region. Moreover, the Riemann-invariant
conditions at subsonic points allow the downstream effects to propagate upstream as time increases.

Effect of the swirl ratio p

In this section, the effect of the swirl ratio on the vortex-breakdown modes is studied. The
downstream-exit boundary conditions are obtained by extrapolating the flow-field variables from
the interior cell centers at the boundary. The Re for all the cases considered is 100,000; g is varied
between 0.2 and 0.38.
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For the B range 0.2-0.27, a shock is captured at the duct inlet and moves slowly in the
downstream direction in the subsequent time steps until it stops just before the end of the straight
inlet portion of the duct. Thereafter, it becomes stationary. No vortex breakdown is detected, and
the flow at the exit boundary remains supersonic. This result shows that as B is decreased by 15.6%
from its original value of 0.32 (Fig. 4), vortex breakdown does not develop.

Fig. Il continued opposite.
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Fig. 11. Streamlines and Mach contours for a supersonic swirling jet from the nozzle; with low-frequency,
almost single-bubble vortex breakdown and extrapolation from interior boundary conditions.

For the 8 range 0.28-0.3, a transient single-bubble vortex breakdown is captured that is similar
fo the case in Fig. 2, where Re = 4000 and B = 0.32. This result shows the dominant effect of the
swirl ratio on the vortex-breakdown development. With a decrease in f of 6.3% from its original
value of 0.32, the vortex-breakdown mode changes from a periodic, multifrequency multibubble
breakdown to a transient, single-bubble vortex breakdown.

For # = 0.38, Fig. 8 shows snapshots of the streamlines and Mach contours of the solution. The
vortex-breakdown bubbles are larger than those shown in Fig. 4. In the initial time range up to
¢ = 17, the process of evolution, convection, merging and shedding of vortex breakdown bubbles
continues, and the inlet shock moves first downstream, then upstream and finally downstream. For
t > 17, a large vortex-breakdown bubble is formed behind the inlet shock, which oscillates with
very small amplitude around a mean position. The process of evolution, convection, merging and
shedding of additional small vortex-breakdown bubbles continues, and the large vortex-breakdown
bubble oscillates with a very small amplitude around a mean position. This vortex-breakdown case
introduces a new mechanism that is different from those encountered earlier.

Vortex Breakdown of a Supersonic Flow from a Nozzle

In this case, a supersonic swirling jet at M; = 3, which is issued from a nozzle into a supersonic
uniform flow of M, = 2, is considered. A grid of 221 x 51 x 2 in the axial, radial and tangential
directions, respectively, is used. The computational domain in an axial planie has the dimensions
7% 3.5 in the axial and radial directions, respectively, where the nozzle exit radius r = 1. The
free-stream Re = 296,000. Figure 9 shows the computational domain and a typical grid for this
external flow case. The grid is clustered at the nozzle exit and at the CL.

Figure 10 shows the inflow profiles of the axial velocity, swirl velocity, radial velocity, pressure
and density, which are taken from the experimental data of Ref. [16]. The initial profiles are used
as quasi-axisymmetric profiles for the present computations. On the cylindrical boundary (side
wall) of the flow at r = 3.5, free-stream conditions are imposed that correspond to M, = 2. The
initial conditions in the computational domain are those that correspond to the free-stream
conditions at M, = 2. The problem is solved with two types of exit boundary conditions at x = 7.
First an extrapolation of all five variables from the interior cell center is used; then the
Riemann-invariant boundary conditions are used.

Extrapolation from interior cell centers

Figure 11 shows snapshots of streamlines and Mach contours of the solution. The streamlines
show multibubble breakdown at the early levels. These bubbles develop because of the shock system
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Fig. 12. Streamlines and Mach contours for a supersonic swirling jet from the nozzle with low-frequency,
almost single-bubble vortex breakdown and Riemann-invariant boundary conditions.

that is formed at the nozzle exit in the vicinity of the CL. A strong portion of the shock exists at
the CL, which splits into two oblique shocks; one is a weak shock and the other is a strong shock.
Vortex-breakdown bubbles develop behind the strong shock. Thereafter, for ¢ > S, the shock
system and the vortex-breakdown bubbles move slowly in the downstream direction. At ¢ > 55,
both the shock system and the vortex-breakdown bubble move upstream. The slow motion of the
shock system and the vortex-breakdown bubble continues back and forth between these two
locations. No vortex shedding has been captured during the computations for this case. Most of
the exit points are continuously supersonic; hence, no upstream effects exist except within a very
thin layer around the CL. ‘

Riemann-invariant boundary conditions

Next, the boundary conditions at the exit are replaced by the Riemann-invariant boundary
conditions with p, = p_ at the subsonic points. Figure 12 shows snapshots of the streamlines and
Mach contours of the solution. A comparison of the present solution with the previous case shown
in Fig. 11 shows that the present boundary condition has only a slight effect on the solution. This
result is not unusual because the subsonic region at the exit is very small and, moreover, the exit
boundary is far from the nozzle exit.

Figure 13 shows an enlargement of the Mach contours at + = 55 for the flow case shown in
" Fig. 11. The shock system near the nozzle exit is clearly seen.

CONCLUDING REMARKS

The numerical simulation and the study of supersonic vortex-breakdown phenomena have been
examined for internal and external supersonic swirling flows. A time-accurate solution of the
unsteady, compressible, full NS equations is used to produce the solutions. The equations are
solved for laminar flows with an implicit, upwind, flux-difference splitting, finite-volume scheme.
The solutions are obtained for quasi-axisymmetric flows with a three-dimensional code, FTNS3D,
by forcing the flow-field vector to be equal on two axial planes in close proximity to each other.
Quasi-axisymmetric flow solutions require 1 order of magnitude less in computational time than



Supersonic vortex breakdown 621

= -

2.1108E+@1

-2.118E+01
2.000E+20 2.231E+01

Fig. 13. Enlargement of Mach contours at 7 =55 for a supersonic swirling jet from the nozzle.

the three-dimensional flow solutions and still provide substantial physical understanding of the
supersonic vortex breakdown and the dominant parameters that affect it.

In the present study, two supersonic swirling flow cases are considered: the first case is a supersonic
swirling flow in a configured duct; the second case is a supersonic swirling jet flow that is issued
from a nozzle into another supersonic uniform flow of lower Mach number than the nozzle flow. For
the configured duct, the effects of Re, the type of downstream-exit boundary conditions and the swirl
ratio § are studied. As Re is varied from 4000 to 100.000, different modes of vortex breakdown are
obtained: a transient single-bubble breakdown; a transient multibubble breakdown; and a periodic
multifrequency, multibubble breakdown. These solutions have been obtained with extrapolated flow
conditions from the interior cell centers at the exit. For the flow case with Re = 100,000, the
downstream-exit boundary conditions have been replaced with the Riemann-invariant boundary
conditions with p, = p.., p, = 2P, and p,/0x = const. The solutions have shown substantially differ-
ent vortex-breakdown modes which are dependent upon the type of exit boundary conditions. The
reason for this result is the upstream effect of the type of exit boundary condition at the exit subsonic
points. Again, for the flow case with Re = 100,000, p has been varied from 0.2 to 0.38. No vortex
breakdown develops in the § range 0.2-0.27. In the f range 0.28-03, a transient single-bubble
breakdown develops. At § = 0.38, a quasi-steady, large vortex-breakdown bubble develops with
small bubbles that experience convection, merging and shedding around the large bubble.

For nozzle jet flow, the type of downstream-exit-boundary condition has very little effect on
the vortex-breakdown mode. This result occurs for two reasons: first, most of the exit portion of
the flow is supersonic, and only a very thin subsonic portion exists around the CL; second, the
downstream exit is located at a large distance from the nozzle exit—therefore, the upstream
propagation of the type of exit boundary condition at the subsonic points is very small.
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Abstract. Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are
solved using the unsteady, compressible, this-layer Navier-Stokes equations. An implicit, upwind-biased, .
flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows
past point cones, the locally conical flow assumption has been used for efficient computational studies of this
phenomenon. Asymmetric flows past a 5° semiapex-angle circular cone at different angles of attack. free-stream
Mach numbers, and Reynolds numbers has been studied in responses to different sources of disturbances. The
effects of grid fineness and computational domain size have also been investigated. Next, the responses of
three-dimensional supersonic asymmetric flow around a 5° circular cone at different angles of attack and
Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry
becomes stronger as the Reynolds number and angles of attack are increased. The asymmetric solutions show
spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally
conical flow. A cylindrical afterbody is also added to the same cone to study the effect of a cylindrical part on
the flow asymmetry. One of the cases of flow over a cone-cylinder configuration is validated fairly well by
experimental data.

1. Introduction

Most flight vehicles are designed for attached flow at low angle-of-attack cruise conditions.
However, for fighter aircraft or missiles under maneuvering conditions, the high angle-of-at-
tack flight regime is of vital importance. At high angle of attack, slender bodies and highly
swept wings, common to both fighter aircraft and missiles, led to extensive regions of vortical
flow on the leeside of the body because of three-dimensional boundary-layer separation. If
the vortices are both symmetric and stable, their influences can be exploited favorably to
provide high lift and maneuverability for the vehicle. The region of favorable influence is
terminated by the onset of asymmetric vortices and the occurrence of vortex breakdown. Such
phenomena produce large side forces and moments, which may be larger than those
attainable by the vehicle control system, thus jeopardizing flight safety.

In the next section, the physical characteristics of vortical flows about various slender
bodies are described. This is followed by a survey of the experimental and computational
research work on asymmetric vortex flows.
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1.1. Physics and experimental work

Keener and Chapman (1977) categorized vortical flow regimes into four distinct flow
patterns for slender bodies at various angles of attack (with zero sideslip). These patterns also
reflect the diminishing influence of the axial flow component (fig. 1). The first pattern
develops in the very low angle-of-attack range, where the flow is attached and vortex free, and
the axial flow is dominant. At moderate to high angles of attack, the crossflow influence
becomes of the same order of magnitude as that of the axial flow, and large scale vortices are
formed on the leeward side of bodies because of three-dimensional boundary-layer separa-
tion. In this angle-of-attack range, the vortices are both stable and symmetric, and the large
increments in normal force due to the low pressure induced on the leeward surface by the
vortices can be exploited to aerodynamic advantage. A majority of the research work in
vortical flows has been focused on understanding this symmetric flow pattern. At even higher
angles of attack, the crossflow effects start to dominate and the vortices may lose their
stability or even symmetry, which may lead to asymmetric vortices about a symmetric body or
breakdown of the vortices. Either phenomenon may occur in a quasi-steady or unsteady
fashion. Both the asymmetric disposition of the vortices and vortex breakdown give rise to
sudden and potentially catastrophic changes in side-force and moment characteristics. Hence,
prediction and understanding of the onset of vortex asymmetry and vortex breakdown are
essential. The fourth flow pattern develops at extremely high angles of attack (up to 90°),
where the crossflow influence dominates completely, and the leeside flow is characterized by
an unsteady diffuse wake, with the possibility of having either random or periodic vortex
shedding depending upon the Reynolds number, Mach number, and geometric details. The
asymmetric time-dependent vortex shedding is similar to the von Kirmin vortex sheet in
two-dimensional flows around cylinders.

Historically, highly swept, round and sharp leading-edge wings and pointed slender bodies
are common generic models for the principal components of real fighter aircraft and missiles.
The study of vortical flows around these isolated aerodynamic components plays an important
role in the understanding of vortex flows under various conditions including unsteady
vortex-dominated flows, vortex /shock interaction, asymmetric vortex flow, and vortex break-
down. For the design of modern fighter aircraft and missiles, the prediction of the onset of
vortical flow asymmetry is essential. For isolated pointed forebodies, the onset of asymmetry
occurs when the relative incidence (ratio of angle of attack to semiapex angle of the forebody)
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Fig. 1. Effect of angle of attack on leeside flow field.
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exceeds a certain value, e.g., for a pointed circular cone, the relative incidence must be higher
than two, which has been documented by Peake and Tobak (1982). This flow pattern develops
about symmetric slender bodies at zero-degree sideslip in response to small perturbations in
body geometry at the nose or in the flight conditions such as transient sideslip and acoustic
disturbances. The sudden changes in side force and moment characteristics resulting from the
asymmetry, in many instances, are sufficiently large to trigger an aircraft or missile to spin. At
relative incidences near the onset of the asymmetry, the flow is nominally steady. At
sufficiently high relative incidences, the flow becomes unsteady and asymmetric, with vortex
shedding either randomly or periodically.

The literature and recent research work, both computational and experimental, show
extensive work in the area of study of symmetric vortex flows. Surprisingly, very limited
research work exists in the area of steady and unsteady asymmetric flows. Recently, a small
number of computational research studies by several investigators have focused on predicting
and analyzing the onset of flow asymmetry over slender bodies. This asymmetric vortex
formation is still an outstanding problem whose physics are poorly understood. While
experimental studies have produced flow visualization of steady and unsteady asymmetric
flows on slender bodies, the mechanisms which lead to flow asymmetry are not well
understood.

Currently, two mechanisms exist in the literature for explaining the evolution of asymmetry
(for example, Peak and Tobak, 1982; Skow and Peake, 1982; Lamont, 1982; Yanta and
Wardlaw, 1982). The first of two these hypotheses appears to operate in both the laminar and
fully turbulent separation regimes. It suggests that the asymmetry occurs because of the
instability of the velocity profiles in the vicinity of the saddle point that exists in the crossflow
planes above the projections of the body vortices. The second hypothesis relates the asymme-
try to the occurrence of asymmetric boundary-layer transition, leading to an effectively
asymmetric mean flow about a given body. The onset of asymmetry over slender bodies is
accompanied by a rapid, local asymmetric movement of the secondary separation line and
then the primary separation lines circumferentially, precipitated by an asymmetric transition
region. Although the second mechanism is operable only within the transition zone, the
former mechanism plays a role in both laminar and fully turbulent flows. For pointed slender
bodies, the first mechanism produces higher side forces than those produced by the second
mechanism. Indeed, the implications from the experimental work of Lamont (1980, 1982) with
tangent-ogive cylinders is that the vortex wake is less structured in the transition domain,
leading to reduced side and normal forces. In the laminar or fully turbulent regions, the
vortex structure is well organized, giving rise to larger forces.

The asymmetric vortex wake usually develops from asymmetric separation line positions on
the body, but the latter does not appear to be a necessary condition for the former to occur.
Asymmetric flow has been documented for sharp-edge delta wings where the primary
separation is fixed at the leading edge (for example, Shanks, 1963; Keener and Chapman,
1977; Ayoub, 1987; Rediniotis and Telionis, 1989). Generally, even though the separation
lines are fixed at the sharp leading edges, asymmetry occurs at higher relative incidences than
those obtained with smooth pointed forebodies or forebody-cylinder configurations. The
occurrence of asymmetry is attributed to the hydrodynamic instability in the vortex flowfield
resulting from the crowding together of the vortices as the wing semi-nose angle is decreased.

The obvious challenges to computational fluid dynamicists is to simulate the asymmetric
vortex flows through the existing two hypothesized mechanisms, which has been discussed
earlier. The second challenge is to investigate the determinable parameters for the onset of
vortical flow asymmetry. These challenges represent the motivation behind the present paper.
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1.2. Computational work

Recently, several attempts have been carried out to computationally simulate steady and
unsteady asymmetric vortical flows around slender bodies of revolution. Graham and Hankey
(1982) presented the first attempt to compute asymmetric vortical flow over a cone-cylinder
body, which had been tested experimentally by Thomson and Morrison (1971). They used the
MacCormack explicit finite-difference scheme to solve the unsteady full Navier-Stokes
equations for a laminar flow on a relatively coarse grid. The computed asymmetric vortical
flow was found to be numerically induced by the MacCormack algorithm by its noncentered
spatial differencing. It was believed that a very small perturbation was induced by the
finite-difference algorithm truncation error, which triggered an instability at the saddle point
above the body. Hence, the instability was induced by numerical bias which was physically
amplified to produce the asymmetry. By switching the algorithm’s sweep direction, the
asymmetry pattern was reversed. Discrepancies between numerical and wind-tunnel results
were attributed to insufficient grid resolution, since small disturbances would not be amplified
on the coarse grid.

In an attempt to simulate asymmetric vortex flow around an ogive-cylinder body at very
high angles of attack and at subsonic speeds, Degani and Schiff (1989) obtained asymmetric
flow solutions to the thin-layer Navier-Stokes equations by introducing a forced asymmetric
disturbance near the body nose in the form of a small surface jet. When the jet was turned
off, the flow asymmetry was dissipated and the flow recovered its symmetry. In a later paper
by Schiff, Degani and Gavali (1989), the unsteady, thin-layer Navier-Stokes equations were
used to compute the same problem. Vortex unsteadiness developed with increasing angles of
attack. The behavior of the fluctuations with incidence paralleled the trends observed in
experiments by Degani and Zilliac (1988). Degani (1990) used the same computational
scheme to predict the flow around the same ogive-cylinder body for angles of attack a = 20°
to 80°. His numerical experiments were focused on investigating the origin of the vortex
asymmetry. Based on his results, the flow field around slender bodies was divided into three
main groups, depending on the angle-of-attack range. In the range 0° < a < 30°, the results
show that the flow was symmetric and introduction of small disturbances near the nose had
only a small effect on the flow asymmetry. In the second range, 30° < a < 60°, the flow
became steady asymmetric upon introduction of a spaced-fixed forced disturbance near the
nose. However, when the disturbance was removed, the flow recovered its symmetric shape.
The origin of asymmetry was attributed to a convective-type instability mechanism. In the very
high range, 60° < a < 80°, the flow became unsteady with vortex shedding upon introduction
of a small transient disturbance with short duration. The origin of flow unsteadiness and
vortex shedding was attributed to an absolute-type instability mechanism. Although this
investigation revealed good tentative conclusions, there are several remaining questions to be
addressed. These questions are related to the dissipative effects of the scheme, particularly in
the crossflow planes, and to the grid fineness and its resolution of the disturbance growth.

Steady solutions of the incompressible, full Navier—Stokes equations for vortical flow over
a sideslipping delta wing have first been presented by Hsu and Liu (1990). Results were
compared with measured data for force and moment coefficients as well as vortex-core
positions. However, the vortical strength was underpredicted, because of either a lack of grid
resolution in the vortical region or an inadequate turbulence model for this massively
separated flow. Strong flow asymmetry was obtained due to the 12° sideslip angle.

Asymmetric vortical flow simulation due to various types of short-duration disturbances
was attempted by several investigators. Siclari and Marconi (1989) also used the unsteady, full
Navier-Stokes equations with a multi-grid, central-difference, finite-volume scheme to solve
for steady, asymmetric, locally-conical flows around a 5° semiapex-angle cone over a wide
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range of angles of attack. At very high incidences, a steady asymmetric solution was captured.
Later, the same scheme was applied to solve for steady, asymmetric, locally conical flows
around cones with elliptic, diamond, and biparabolic sections (Siclari, 1990).

The present authors (Liu et al., 1990; Kandil et al., 1990a—c) investigated the prediction
and control of asymmetric supersonic vortex flows around circular and noncircular cones over
wide ranges of angles of attack, Mach numbers, and Reynolds numbers with locally conical
flow assumptions. Unsteady asymmetric vortex flows with periodic vortex shedding were
captured using several different schemes. Later, Kandil et al. (1991a) compared the asymmet-
ric flow solutions using thin-layer Navier-Stokes and full Navier-Stokes equations. The
three-dimensional asymmetric flow solutions around circular cones and cone-cylinder configu-
rations were also studied by the Kandil et al. (1991b). A comprehensive review of the research
work done by the present authors is presented in the next section.

1.3. Present work

In this work, the unsteady, compressible, thin-layer Navier—Stokes equations are used to
study supersonic, asymmetric, vortical flows. The onset of flow asymmetry occurs when the
relative incidence of pointed forebodies exceeds certain critical values. At these critical values
of relative incidence, flow asymmetry develops due to natural and /or forced disturbances. In
actual flows, the origin of natural disturbances may be a transient sideslip, an acoustic
disturbance, or similar disturbances of short duration. The origin of forced disturbances may
be geometric imperfections in the nose region or similar disturbances of a permanent nature.
The present work is focused on the evolution of flow asymmetry due to assumed natural-type
disturbances. Two types of flow disturbances are studied: a random round-off error disturb-
ance and a controlled transient sideslip disturbance with short duration. In addition to
relative incidence as one of the determinable parameters for the onset of flow asymmetry, the
effects of free-stream Mach number, Reynolds number, and cylindrical afterbody are studied
and have been determined to be important parameters.

Because of the expensive computational resources required for solving three dimensional
problems, the first part of the computational studies have been applied to supersonic, locally
conical flows around point cones. Therefore, the mechanism for the onset of steady and
unsteady flow asymmetry can be studied efficiently and delineated by solving the locally
conical problems before the three-dimensional problems are examined. In the second part,
three-dimensional asymmetric supersonic flows over a cone and cone-cylinder configurations
are investigated, based on the study of the locally conical flow solutions.

2. Formulation

In high Reynolds number viscous flows the effects of viscosity are mostly concentrated in
narrow regions adjacent to solid bodies and in narrow regions of freeshear layers. Owing to
computer memory limitations, only a limited number of grid points is available for clustering
mesh points in these regions. As a result, fine-grid spacing is used in directions which are
nearly normal to these regions, and coarse-grid spacing must be used tangent to these regions.
In boundary-layer theory, perturbation analysis shows that streamwise components of the
viscous terms can be neglected relative to those in the normal direction. Similar arguments
can be applied to the Navier-Stokes equations as a justification for the thin-layer approxima-
tion. The thin-layer approximation is not the same as the boundary-layer approximation, since
an approximate form of the normal momentum equation is retained and pressure variation
across the boundary-layer thickness is taken into consideration. The thin-layer approximation
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breaks down for low Reynolds numbers and a regions where viscous effects become signifi-
cant in all directions. Of course, the full Navier-Stokes equations can be incorporated if
sufficient resolution is provided by the limited grid and if the physical situation warrants it.
Therefore, in the present work, thin-layer Navier-Stokes equations are chosen to formulate
two- and three-dimensional flow problems.

2.1. Thin-layer Navier-Stokes equations

In many computational applications, the body surface is a boundary of the computational
domain, and hence the use of body conformal coordinates makes the surface boundary
condition easy to apply. The transformation of the governing equations from the physical
Cartesian coordinate system (x,, x,, x;), to time-independent curvilinear coordinates,
(&4, €2, £3), is given by

M =E€"(xy, X3, X3). (M
Using the above transformation, the thin-layer Navier-Stokes equations are

dG/dt + OE,, /6™ — )(E,),/06° =0, m=1,2,3, (2)
where the flowfield vector, 4, is given by

p
pu,y

G=J"lg=J""{pu2|, (3)
pu;
e!

~

the inviscid fluxes, E, , are given by
pU,
pu,U, + &7 p
E,=J'puU,+&0p |, (4)
pu U, +&5p
U,(e +p)
and the viscous and heat-conduction flux in £ direction, (Ev)3, is given by
0
§x317j1
(B.),=0'|&2|, j=1,2,3 (5)
fi’rjs

2b

x5

The contravariant velocity component in the ¢™ direction is

U, = &lu,, (6)
and any element corresponding to the three momentum equations in eq. (5) is given by
uM, ou, ou,
3. — 14343 5 3.3 -
x}le = Re 35“'15%@ +§x1§‘1-a§_3 , 1=1,2,3, (7)
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where f] =9¢°/3x;. The last element in eq. (5) is

uM, du; du, 1 da’
3po=——0|1 3—’U3+§3]§fj(uk—-— —_— . (8)

b. + —_
57 Re |*TMagd 3 (y-1)Pr ag?

In eq. (5), the 7s represent the Cartesian components of the shear-stress tensor for a
Newtonian fluid, assuming Stokes hypothesis and the bs are the shear-dissipation power and
conduction heat transfer. The inverse of the Jacobian matrix of transformation is

xlgl xlfz xlg’

Jle —————— 25 = Xpg1 X2 X2, (9)

x3_£| x3_£: x3§3

and the metric terms are

" ax, dx,

—_— = %]_1eijnelkma_§i e (10)

ox

m

where ¢,;, and e,,,, are the permutation symbols.

For convenience, all the tensors are expressed in indicial notation. The flow variables are
introduced in non-dimensional form, and each is referenced to its appropriate free-stream
value. The non-dimensional density, p, Cartesian velocity components i, u,, u, total energy
e,, viscosity u, and speed of sound a, are defined as the ratio of the corresponding physical
quantities to those in the free stream, namely p,, a., p.a2, m., and a,, respectively. The
pressure, p, is non-dimensionalized by p_a2, and is related to the total energy for an ideal gas

by the equation

P=(‘Y"1)(et-_%/’uj“j)’ (11)
where vy is the ratio of specific heats, and its value is taken to be 1.4 in the present research
work. The coordinates x,, x,, x,, and time, ¢, are non-dimensionalized by a characteristic
length, L, and a characteristic time, L /a,, respectively. The viscosity, u, is evaluated by using
Sutherland’s law

p=T"2[(1+C)/(T+C)], (12)

where T is the temperature and C is the Sutherland constant, which is 110.4 K. The Prandtl
number, Pr, is chosen to be 0.72. The Reynolds number is defined as Re = p UL /u., and
the characteristic length, L is chosen as the length of the body.

The values of all the free-stream flow quantities which are used as the initial conditions for
all applications are given as follows:

p.=1, u.=M,cos acos B, u,=-—-M,sinf,

Uy, =M, sinacos B, e.=1/y(y-1)+iM2, p.=1/y,

a,=T.=1, U =(unuy)’? M,=U/a,, (13)
where M_ is the free-stream Mach number, « is the angle of attack, and B is the sideslip
angle.

2.2. Locally conical Navier—Stokes equations

For supersonic flows, the three-dimensional Navier-Stokes equations can be transformed
into the simpler conical flow equations by using the conical coordinates, X, Y, and Z, with

X=x,, Y=x,/x, £Z=x3/x. (14)
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Physically, a conical flow has the property that all flow quantities are invariant along rays that
emanate from the apex of the conical surface. Using eq. (14) to transform the full Navier—
Stokes equations to X, Y, Z coordinates and imposing the conical flow property, the resulting
equations in abstract form are given by

3¢ OF-F,) ¥G-G,)
+ +

— +2(E,-E,) =0, 15
at aY aZ ( 1 V]) ( )
where the inviscid fluxes are
pu, qul
pu u, pui+p
puyls pu, s
u(e,+p))  \ue+P)
pu; qul
pu iy puy+p
G=E,-ZE,=| P¥* |-z[ PH¥2 | (17)
pus+p pUL Uy
us(e, +p) u(e,+p)
and the viscous fluxes are
0 0
721 ™
Fv=Ev2—YEvl =|T2|-Y|Tr ’ (18)
T23 713
b, b,
0 0
T31 T
G=E, -ZE, =|"2|-2Z|T12{. (19)
733 T13
b, b,

The shear stresses, dissipation power, and heat transfer terms are obtained by using chain-rule
differentiation and enforcing the conical flow property, i.e. all derivatives in the X-direction
are zero. For example, the principal stress, 7,,, can be simplified as
2uM,_ ou, ou, Ou, Ou,
ReX 2y oY t2z 38z * ) g M 0Z |’ (20)
The resulting equations (15) have spatial variation in the Y- and Z-directions only. Thus,
these equations are two-dimensional equations with source terms. Hence, they are more
economical to solve than the three-dimensional equations. It is also noticed that the time-de-
rivative term in eq. (15) is multiplied by X and an axial length-scale dependence exists in the
viscous terms (20). Hence, eq. (15) is not self-similar in X-direction, and thus it does not
represent a globally conical flow. Only the steady inviscid flow equation represents a globally
conical flow. However, for unsteady viscous flow over a conical body, if X is fixed at a certain
location, the flow may be thought of as “locally conical”, with the Reynolds number
determining the location of the conical plane in which eq. (15) is solved. The best that can be
done to make use of this equation is to select a constant value for X, and solve the resulting
equation for what we call “locally conical flow”.

™= "
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3. Computational scheme

The computational scheme used to solve the governing equations is an implicit, upwind-bi-
ased flux-difference splitting, finite-volume scheme. The discretized equation is integrated
numerically in time using the Euler implicit time-differencing method. The linearized,
backward-time approximation for the flowfield vector is written in the delta form as

I aR\"
J At 04
AGr=4"""-g".

R(§") = —[55,(1@,.)"—553(E‘V);']. (22)

In eq. (22), 8, is the spatial difference operator. The convective and pressure terms are
discretized using the flux-difference splitting scheme of Roe and differenced using the
MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) of van Leer. The
flux-difference splitting of Roe is based on the approximate Riemann problem. The Riemann
problem is used as a mechanism to divide the flux difference between the neighboring states,
such as the interface of two computational cells, into component parts associated with each
wave field. As each eigenvalue is also associated with its own wave field, so the splitting can
be done based on the eigenvalues. The smooth flux limiters are used to eliminate oscillations
in the shock region, and the viscous and heat-flux terms are centrally differenced. The
resulting difference equations are solved using a spatially split approximate factorization
along the &', £2, £ directions, respectively. The scheme is first-order accurate in time and
third order accurate in space. Details of the above described scheme are given by Wong
(1991).

Since the applications in this paper cover some locally conical flow problems, locally
conical flow solutions can be obtained by solving the problem in three conical planes using a
three-dimensional -solver. This is achieved by setting the conserved components of the
flowfield vector, 4, to be equal at two planes. All of the locally conical solutions in the present
work are obtained in this way.

A§"=R(4"), (21)

where

3.1. Initial and boundary conditions

All the numerical calculations of the steady-flow problems are obtained by using impul-
sively-started initial conditions, i.e. bodies are suddenly placed in the free stream at angles of
attack specified by the problem. For unsteady-flow problems, solutions obtained from the
pseudo time-stepping calculation corresponding to the same flow conditions are used as initial
conditions in order to save the computational cost for the transient state.

The boundary conditions for the present work are implemented explicitly. On the solid
boundary, the no-slip and no-penetration conditions are enforced, i.e. u; =u,=u;=0, and
the normal pressure gradient is assumed to be zero. The adiabatic condition is maintained on
solid surface.

To obtain a locally conical flow or three-dimensional solution for supersonic free-stream
Mach numbers, the computational domain is extended far enough to permit capture of the
bow-shock formed outside of the body as part of the solution. Since the disturbance from the
body will not propagate beyond the bow-shock in the crossflow plane, the conditions outside
the conical shock are the same as the free-stream conditions. Therefore, the farfield boundary
conditions are specified to be the free-stream conditions. Since the locally conical flow
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solutions are obtained by solving the problem in three conical planes using a three-dimen-
sional solver, free-stream conditions are enforced on the farfield boundary of the first and
third conical planes. For the three-dimensional flows, first-order extrapolation from the
interior points at the outflow boundary is used. At the geometric plane of symmetry, periodic
conditions are used since the problem is solved for the whole computational domain.

4. Results and discussion
4.1. Locally conical flows

The mechanisms which lead to steady and unsteady asymmetric vortical flows past slender
wings and bodies at high angles of attack at zero sideslip are not well understood. From
experimental studies of these phenomena, several investigators proposed two mechanisms for
explaining the origin of the flow asymmetry. These have already been described in the
previous section. The first mechanism, asymmetric flow due to a saddle-point instability, is
demonstrated in this section. Two types of flow disturbance, a random round-off error
disturbance and a controlled transient sideslip disturbance with short duration, are used to
demonstrate the mechanism which leads to flow asymmetry. In addition to the relative
incidence as one of the determinable parameters for the onset of flow asymmetry, other
influential parameters such as the Mach number are studied and presented in this section.

4.1.1. Steady asymmetric flows over a cone

Supersonic flows over a 5° semiapex angle cone at a Reynolds number Re = 10° have been
computed. The grids used in all the numerical tests in this section are generated by using the
modified Joukowski transformation with a geometric series for grid clustering near the cone
surface. For all the cases, a grid of 161 X 81 points is used, where the first number is the
number of points around the cone and the second number is the number of points normal to
the cone surface. A 241 X 121 grid and a 161 X 81 grid with different mesh fineness ratios or
different computational domain sizes have also been used to test the effect of grid fineness
and domain size on the numerical solutions. A typical grid of 161 X 81 points is shown in
fig. 2.

3.40 T 0.200 FFFT

1.87: 0.067:

0.33: —0.067:

T o T om T 2k —020T0 T —0067 0.067 0.200

Fig. 2. A typical grid of 161 X 81 points for a circular cone.
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points, R, = 21r).
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To establish an optimum grid and to ensure that the asymmetric flow solution is unique,
irrespective of the grid fineness and the computational domain size, numerical tests have been
carried out with several different grids. The tests have computed the supersonic flow around a
cone at a =20°, M,_ =18, and Re = 10° (relative incidence is four for this case). A grid of
161 X 81 points in the circumferential and normal directions, respectively, has been used with
different minimum grid spacing, A¢>, at the solid boundary, while the maximum radius of the
computational domain, r,, is fixed at 21r, where r is the radius of the circular cone at the
axial station of unity. Three cases, computed using A¢3 =103, 104, and 1073, are shown in
fig. 3. In fig. 3, the logarithmic residual error versus the number of iterations, the surface
pressure versus the azimuthal angle, ®, which is measured from the leeward plane of
geometric symmetry, and the total-pressure-loss contours are shown. The residual error
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Fig. 4. Effect of increased grid density on the asymmetric solution (a = 20°, M_=1.8, Re = 10°, 241 x 121 points,
AgS. =107% R,=21r).
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figures show that the error reaches machine zero (107!° to 107 !!) in about 2500 time steps in
all cases and the solutions are symmetric at this point. Afterwards, with the machine
round-off error is acting as a random disturbance to the flow field, the residual error grows,
then drops down by at least another seven orders of magnitude, and finally stays constant
thereafter (constant residual error for 2000 iterations is shown). The pressure coefficient and
total-pressure-loss contours show that the flow becomes steady, asymmetric, and stable. The
solution of the three cases are not necessarily the same because the source of disturbance is a
random one, and it is possible that the solutions are mirror images of each other. Other types
of disturbances will be discussed in the next section. Furthermore, a grid of 241 X 121 points
with minimum spacing of 107°% is used to test the effect of grid density on the asymmetric
solution. Figure 4 shows the results of this case. The residual error figure shows that the error
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Fig. 5. Effect of increased computational domain size on the asymmetric solution (a =20°, M, =18, Re= 107,
161 x 81 points, Ag2, =107% R, =32r).
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drops ten orders of magnitude in 7500 time steps, then grows about five orders of magnitude
after being triggered by the machine round-off error and then converges to the same
asymmetric solution. Since the asymmetric solution is unique, irrespective of the size of
minimum grid spacing and grid density, an optimum grid spacing of 10~ is chosen in the
present study.

Two grids of 161 X 81 points with the maximum computational domain radius increased
from 21r to 32r are used to test the effect of the domain size on the solution. The optimum
minimum spacing is used for the grid. The results of this case are shown in fig. 5. The residual
history shows a similar trend in going through a symmetric unstable solution and then to an
asymmetric stable solution. The pressure coefficient and total-pressure-loss contours figures
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Fig. 6. Effect of spatial disturbance on the asymmetric solution (a =20°, M, =18, Re =10, 1617x81 points,
AE3=10"% R,=21r).
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are consistent with the results shown in fig. 3b. Thus, the optimum grid spacing of A¢* =10"*
and the maximum radius of 217 are chosen to be used for all the cases presented in this
paper.

As mentioned in the previous section, the locally conical flow solution is obtained by
forcing the equality of the flow-field vector at two cross sections, which are taken as £'=095
and 1. A numerical test has been performed for the same flow conditions except that the
solution is achieved by forcing the equality of the vector, ¢, at £' = 0.995 and 1. The purpose
of this task is to test the spatial disturbance on the asymmetric solution. Figure 6 shows the
results of convergence history, pressure coefficient, and total-pressure-loss contours. The
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Fig. 7. Steady asymmetric flow solution for circular cone due to +0.5° transient sideslip (B) (a =20°, M, =18,
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Fig. 8. Comparison of residual-error history and surface pressure for circular cone at different Mach numbers
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residual error shows that the solution takes larger number of time steps for the asymmetry to
be triggered by the machine round-off error. However, the surface pressure and the total-
pressure-loss contours confirm the uniqueness of the asymmetric solution. Since A¢! = 0.005
is a small disturbance to the locally conical flow assumption, it is reasonable to have longer
time steps to obtain the asymmetric solutions. To efficiently use of the limited computational
resources, A¢! = 0.05 is used for all the locally conical flow problems in the present work.
Since the magnitude of residual errors shown in the above cases is so small, it is believed
that the disturbance which triggered the flow asymmetry can be attributed to the machine

Mo =30
Fig. 9. Comparison of crossflow velocity vectors and total-pressure-loss contours for circular cone at different Mach
numbers (& = 20°, Re = 10°),
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round-off error. This type of disturbance is random in nature. In the next section, the results
of a controlled type of disturbance are presented.

4.1.2. Controlled transient sideslip disturbance

In this section, steady asymmetric flow solutions due to a transient sideslip disturbance of
short duration are presented. Results of the transient sideslip, 8 = +0.5°, are shown in fig. 7.
The residual error figures show a drop of seven orders of magnitude in the first 2000 time
steps. At this step, a sideslip disturbance is imposed for six time steps, then it is removed.
Irrespective of the magnitude or the direction of the sideslip disturbance, the residual error
increases by six orders of magnitude, then drops down very rapidly and a stable asymmetric
flow solution is obtained. The asymmetric solutions corresponding to the +0.5° sideslip -
disturbances are mirror images of each other, as can be seen from the surface-pressure
distributions, crossflow velocity vectors, and total-pressure-loss contours. Moreover, the final
stable asymmetric solutions of the +0.5° sideslip disturbances are the same or mirror images
as those from random disturbances shown in figs. 3-5.

4.1.3. Steady asymmetric flow at different Mach numbers

Using the same optimum grid and the same 5° semiapex angle cone at a = 20°, three cases
of locally conical flow solutions with free-stream Mach numbers ranging from 2.2 to 3.0 have
been computed. The effect of the free-stream Mach number on the convergence history,
surface pressure, crossflow velocity, and total-pressure-loss contours are shown in fig. 8 and 9.
At M_ = 2.2, the residual error shows that the stable asymmetric flow is obtained within the
same number of time steps as that of the M_ = 1.8 case. At M, = 2.6, the residual error shows
that the final asymmetric solution is obtained after a larger number of time steps. At
M_ = 3.0, no asymmetric flow has been captured and the flow stayed symmetrically stable.
The surface pressure figures show that the flow asymmetry gets weaker as the Mach number
is increased. This conclusion is strongly supported by the crossflow velocity vectors and the
total-pressure-loss contours, as shown in fig. 9. It is also noted that since the nature of
disturbance is random, flow asymmetry changes sides as the Mach number increases, until it
disappears. The significant feature of these numerical tests is that the asymmetric /symmetric
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Fig. 10. Time histories of residual error and lift coefficient for unsteady asymmetric flow around circular cone
(a=30°, M, =18, Re =10°).
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Fig. 11. Snapshots of surface-pressure coefficient for unsteady asymmetric flow around circular cone (o = 30°,
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behavior of the solutions is continuous and the general trends with Mach number are in
agreement with the experimental observations by Peake and Tobak (1982).

4.1.4. Unsteady asymmetric flows over a cone

Keeping the Mach number at 1.8 and Reynolds number at 10°, the angle of attack is
increased to 30° for the flow around the same circular cone (relative incidence is six for this
case). The histories of the logarithmic residual error and the lift coefficient versus the number
of iteration up to 15900 time steps are shown in fig. 10. First, pseudo-time stepping has been
used up to 8000 iterations and the solution has been monitored every 500 iterations. The
solution is still symmetric at 3000 iterations. Thereafter, the flow asymmetry has been
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Fig. 12. Snapshots of total-pressure-loss contours for unsteady asymmetric flow around circular cone (a = 30°,
M_=18, Re=10% Ar=10"?.
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obtained through the random disturbance of the scheme. The asymmetry changes randomly
from the left side to the right side, which indicates a possibility of unsteady asymmetric vortex
shedding. Therefore, the computations have been restarted from the 8000th time step using
time-accurate stepping with a minimum global time step, (At),;, = 103, The residual-error
and lift-coefficient histories show that, after switching to the time-accurate stepping, a short

7

T’Pressure "1"3"ss

Fig. 14. Snapshots of total-pressure-loss contours for unsteady asymmetric flow around circular cone within one cycle
(cylinder axis is a time axis; & = 30°. M, = 1.8, Re = 10%, Ar =10"").
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transient response is followed by a periodic response. Figures 11, 12 and 13 show snapshots of
the time history of the solution for the surface-pressure coefficient, total-pressure-loss
contours, and crossflow velocity vectors. The solutions are shown every 100 time steps starting
from the time step of 15000 to 15700. At a time step of 15000, the asymmetric flow is seen
with a vortex already shed from the right side. As time passes, the shed vortex is convected
into the flow, and the primary vortex on the left side stretches, while the primary vortex on
the right gets stronger, as seen from the surface-pressure curves in fig. 11. At a time step of
15 600, the primary vortex on the left side is about to be shed. At the time step of 15 700, the
primary vortex on the left side is shed into the flow field. It is also noted that the solution at
the time step of 15700 is a mirror image to that of the 15000 time step. Hence, the solution
from the 15000 to the 15700 time steps represents the one half cycle of shedding. The
periodicity of the shedding motion has been captured. The period of oscillation is 10~ X 1400
= 1.4, which corresponds to a shedding frequency of 4.488 (Strouhal number). Figure 14
shows a snapshot of the total-pressure-loss contours over one period on a cylinder, with the
axis of the cylinder representing the time axis. The present unsteady asymmetric flow solution
has also been obtained exactly by using the flux-vector splitting scheme with the thin-layer
Navier-Stokes equations and the flux-difference splitting scheme with the full Navier—Stokes
equations on a finer grid (Kandil et al., 1991). Hence, the present solution is unique and
independent of the computational scheme or the approximation level of the Navier-Stokes
equations.
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Fig. 15. A typical grid of 65X 161 X 81 points for a 5° semiapex-angle cone.
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4.2. Three-dimensional flows

Steady and unsteady solutions using the locally conical flow assumptions for supersonic
flows around a circular cone have been presented in the previous section. For such problems,
these assumptions reduce the computational time and memory. However, the three-dimen-
sional effects cannot be neglected in certain vortical regions, such as for flows with massive
three-dimensional separation, vortex shedding, vortex breakdown, and others. In these re-
gions, one has to rely on solutions of three-dimensional Navier-Stokes equations.

In this section, solutions of three-dimensional asymmetric flows around a 5° semiapex-an-
gle circular cone and two cone-cylinder configurations are presented. Two issues concerning
the flow asymmetry around a circular-section cone in response to a short duration transient
sideslip disturbance are addressed. First, for the same cone section and for the same flow
conditions and disturbance, does the three-dimensional flow solution produce the same
solution as that of the locally conical solution presented in the previous section? Second, what
are the effects of angle of attack, Reynolds number, and cylindrical afterbody on flow
asymmetry? Finally, the results of the asymmetric flow solution are validated with those of the
experimental data by Landrum (1977).

4.2.1. Steady asymmetric flow over a cone

An O-H grid of 65 X 161 x 81 points in the streamwise (£!), circumferential (¢2), and
normal (£%) directions, respectively, has been used. The grid is generated in the crossflow
planes using a modified Joukowski transformation which is applied locally at the grid length
stations, with algebraic stretching at the cone surface. The crossflow grid (161 X 81) is of the
same size as that used for the locally conical solutions. In order to retain the same resolution
for each conical section, the outer boundary is a conical surface with the maximum radius of
3L at the cone base, where the L is the length of the cone. The minimum spacing at the cone
surface ranges from 1073 at the cone base to 10~% at the cone apex. In the circumferential
direction, the grid is equally distributed for the whole computational domain. A typical grid is
shown in fig. 15.

For the same flow conditions, a = 20°, M_ = 1.8, and Re = 10°, at which the locally conical
flow solution is asymmetric, a symmetric flow solution has been obtained using the three-di-
mensional calculation. The difference is explainable as a Reynolds number effect, since the
locally conical solution is obtained at a fixed axial station, £' = 1.0. As mentioned in the
formulation, a length scale in the viscous terms (Reynolds number) for steady viscous flow
remains after the conical transformation. The resulting equations are not self-similar, and the
location of the conical plane in the transformed equation determines the Reynolds number.

A slight asymmetric flow solution has been obtained for the three-dimensional cone flow
after increasing the angle of attack to 40°, and the free-stream Reynolds number to 4 X 10°,
and reducing the free-stream March number to 1.4. The flow is assumed fully laminar in the
numerical computation. During this computation, it has been observed that the computed
flow remains symmetric about the geometric plane of symmetry at the leeside of the body.
The symmetry of the solution is then disturbed by introducing a sideslip angle of 2° to the flow
field for about 100 time steps and then it is removed. Thereafter, the pseudo-time stepping is
continued until the residual error drops again four orders of magnitude and a stable
asymmetric solution is obtained. The total-pressure-loss contours of this case are shown in fig.
16. Although the resulting flow is no longer symmetric, the asymmetry is relatively small. In
this case, the vortices still lie close to the leeward-body surface, and the size of the shear layer
and height of the primary vortices grow with increasing distance downstream. It is also seen
that the solution is almost self-similar over a long distance of the cone length.

Next, the Reynolds number is increased to 5 X 10° and 6 x 10%, keeping the other flow
conditions the same as those of the previous flow case. Again, the source of the disturbance to
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Fig. 17. Total-pressure-loss contours of flow around 5° semiapex-angle cone (a = 40°, M.=14 Re=5x10%.
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break the symmetry of the solution is a 2° transient sideslip of short duration. The computa-
tion has been monitored every 300 time steps until there are no significant changes in the
steady-state solutions. Figures 17 and 18 show the total-pressure-loss solutions for these cases.
Figure 17 shows that the asymmetry of the vortical flow becomes strong and the self similarity
of the flow asymmetry is substantially lost. However, it is seen that the primary vortices do not
change sides as moving in the downstream direction. Figure 18, which corresponds to the
free-stream Reynolds number of 6 X 10°, shows flow asymmetry that changes sides as the
solutions develop along the length of the cone and as vortices are shed into the flow field.
Since the solution is steady, the vortex shedding is a spatial one. A close study of the solutions
shown between the fourth crossflow plane and seventh crossflow plane reveals that the vortex
shedding changes from the right side (looking downstream, fourth crossflow plane) to the left
side (seventh crossflow plane). The solutions on these two planes are nearly scaled mirror
images of each other. The present spatial flow asymmetry is qualitatively similar to the
temporal flow asymmetry of the locally conical flow solution shown in fig. 14. It is seen that
most of the asymmetric vortex flow characteristics and physics in the crossflow can be
captured quantitatively by the locally conical flow solutions. _

Figure 19 shows the total-pressure-loss solution for the same cone for Re =8 X 10°. The
asymmetry of the vortex flow becomes much stronger, as compared with the previous cases of
figs. 16~18. By comparing the solution of this case with that of the Re = 6 X 108, it is noticed
that the flow asymmetry of the case with Re =8 X 10° changes sides along a shorter axial
distance (third and fifth crossflow planes). Moreover, the flow asymmetry of the case with
higher Reynolds number changes sides one more time (fifth and ninth crossflow planes) and,
thus, a complete wave length of flow asymmetry is formed between the third and ninth
crossflow planes. A close study of the mechanism of spatial vortex shedding along the cone
reveals that it is similar to the unsteady vortex shedding of the locally conical flow solution. At
the third crossflow plane (x,/L = 0.2), the asymmetric flow is seen with vortex already shed
from the right side. Moving downstream, the shed vortex is convected into the flow, and the
shear layer on the right side stretches, while the primary vortex on the left side gets stronger,
as seen from the surface-pressure curves in fig. 20. At the fifth crossflow plane (x,/L = 0.4),
the primary vortex on the right side is about to be shed. At the ninth crossflow plane
(x,/L =0.9), the primary vortex on the right side is almost shed in the flow field, while the
lower part of shear layer on the same side has stretched and shrunk in thickness. It is also
seen that at the ninth crossflow plane, the flow is approximately a mirror image of that at the
third crossflow plane. The behavior of the flow asymmetry over one period in fig. 14 is
qualitatively similar to that of the flow asymmetry over one wave length in fig. 19.

4.2.2. Unsteady asymmetric flow over a cone :

In this section, solutions of the unsteady supersonic asymmetric flow around the same
circular cone at an angle of attack of 50° are presented. The free-stream Reynolds number
and Mach number of this case are 8 X 10 and 1.4, respectively. The present flow case has
been started from the solution obtained for a = 40°, instead of initializing with free-stream
conditions everywhere. In addition, this steady asymmetric initial condition can be considered
as the source of disturbance to the flow field, so the use of transient sideslip disturbance is
not necessary for this case.

In the computation of locally conical flow problems it has been shown that, once unsteady,
asymmetric vortex shedding is initiated, the perturbation can be removed. The vortex
shedding will continue without the need for any further perturbations since the flow is
unstable. In order to investigate whether the same phenomena exists for the unsteady
three-dimensional asymmetric flow, the computation has been first done using pseudo-time
stepping until the residual error drops three orders of magnitude. The flow asymmetry,
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Fig. 18. Total-pressure-loss contours of flow around 5° semiapex-angle cone (a = 40°, M, =14, Re = 6 X 10°).
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Fig. 19. Total-pressure-loss contours of flow around 5° semiapex-angle cone (o = 40°, M, = 1.4, Re =8 X 10°).
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changing randomly from the left side to right side, has been captured by the pseudo-time
stepping calculation, which indicates a possibility of unsteady vortex shedding. The computa-
tion has been continued using time-accurate calculations with a minimum global time step of
10~3. The unsteady structure of the flow at a = 50° is monitored at different time steps to see
the mechanism of the unsteady vortex shedding and the unsteady behavior of the vortex
structure. Due to the fine computational grid spacing at the nose region and the cone surface,
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Fig. 20. (Continued).

the allowable computational time step is so small that the calculation becomes prohibitively
expensive for time-marching more than a small part of a shedding cycle.

Consequently, only small changes are visible in the instantaneous snapshots of the unsteady
asymmetric flow solutions presented in this section. The flow at time step 10616 is shown by
the total-pressure-loss contours (fig. 21), surface-pressure coefficients (fig. 23) and enlarge-
ment of the total-pressure-loss contours (fig. 24). The same quantities for time step 11816 are
shown in figs. 22, 25, 26. Figure 21 shows a strongly asymmetric solution with vortex shedding
changes little with axial location. The shear-layer thickness for each crossflow station extends
about one and one half times the local diameter of the leeward plane of symmetry, as
compared with the case of a = 40°. It is evident that all of the three vortices interact with
each other in a relatively small distance above of the body surface. The blow-up of
total-pressure-loss contours at the time step of 11816 (fig. 26) shows that the flow asymmetry
changes side at the crossflow station of x,/L = 0.1, as compared with the same crossflow
section in fig. 24. Obviously, the total computed time is too short in terms of physical time to
draw final conclusions for periodic vortex shedding, but the total-pressure-loss contours
clearly show that the flow is unsteady asymmetric with a possibility of vortex shedding at each
axial station.

All of the numerical results have been obtained using either the Cray-2 supercomputer of
the NASA Langley Research center or the Cray-YMP supercomputer of the NASA Ames
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Fig. 21. Total-pressure-loss contours of flow around 5° semiapex-angle cone at time-step of 10616 (a = 50°, M. = 1.4,
Re = 8x10°).
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Fig. 22. Total-pressure-loss contours of flow around 5° semiapex-angle cone at time step of 11816 (a = 50°, M_ =14,
Re = 8% 10°).
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Fig. 24. Blow-up of the total-pressure-loss contours on 5° semiapex-angle cone at time step of 10616 (a = 50°

M. =14, Re =8x10°).
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Research Center. Each of the steady asymmetric flow cases takes about 100 h of CPU time on
the Cray-2 and 65 h of CPU time on the Cray-YMP computer. The unsteady asymmetric flow
case takes over 82 h of CPU time on the Cray-YMP computer for the 11816 computed time
steps.

4.2.3. Asymmetric flow over cone~-cylinder configurations

The effect of a cylindrical afterbody on flow asymmetry is investigated by introducing a
cylindrical afterbody of unit length to the same circular cone. The flow around the resulting
cone-cylinder configuration is solved with the flow conditions as for @ =40°, M_ =14, and
Re = 4 X 10°, which are the same flow conditions of the isolated unit-length cone shown in
fig. 16. The source of disturbance is the same 2° transient sideslip. The computed total-pres-
sure-loss contours are shown in fig. 27. It should be noted that slight flow unsteadiness has
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been observed during the computations. Comparing the results for fig. 16 with fig. 27, it is
noticed that the flow asymmetry is stronger for the cone-cylinder configuration than that of
the isolated conical forebody. It should be noted that subsonic flow region does exist inside
the conical shock surrounding the cone-cylinder configuration, hence, the downstream cylin-
drical-afterbody boundary has an upstream effect on the flow. There are two reasons for the
afterbody to increase the flow asymmetry; the first is the increase of the local angle of attack
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Fig. 25. Surface-pressure coefficient on 5° semiapex-angle cone at time step of 11816 (a=50°, M, =14,
Re = 8x 10%).
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Fig. 25. (Continued).

of the leeward side of the cylinder, and the second is the surface discontinuity at the
cone-cylinder juncture. Both of these increase the spatial growth of the flow asymmetry.
Next. a validation flow case is presented by comparing with available experimental data.
For this purpose. the cone-cylinder configuration of 0.5:0.5 (the ratio of the conical forebody
to the cylindrical afterbody) is used, which was experimentally tested by Landrum (1977). The
flow conditions for this case are a =46.1°, M_=1.6, and Re =6.6 X 10°. The Reynolds
number for this case is based on the total body length. The cone semiapex angle is 9.46°, and
the numerical computation is assumed to be fully laminar. The problem is solved using a grid
size of 65 X 161 x 81, which has the same resolution in the crossflow plane as the previous
cases. Figure 28 presents the computed total-pressure-loss contours, which show a relatively
weak asymmetry at the nose region and a strong spatially growing asymmetry in the
downstream direction. Figure 29 shows the surface-pressure coefficient along with the
experimental data, and figs. 30 and 31 show the total-pressure-loss contours and the total
Mach-number contours in the crossflow planes at the axial stations of 0.075, 0.225. 0.475, and
0.775. The computed (solid line) and measured (symbol) surface-pressure coefficients are in

z,/L =0.05 /L =0.1

Fig. 26. Blow-up of the total-pressure-loss contours on 5° semiapex-angle cone at time step of 11816 (a = 50°
M,.=14 Re=8x10"),



Fig. 26. (Continued).
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Fig. 27. Total-pressure-loss contours of flow around 5° semiapex-angle cone-cylinder configuration (a=40°.
M_=14, Re=4x10°).

a=46.1° :
M_=1.6
Re=6 6 X 106

Fig. 28. Total-pressure-loss contours of flow around 9.46° semiapex-angle cone-cylinder configuration (a = 46.1°.
M, =16, Re =6.6x10°).
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Fig. 29. Surface-pressure coefficient on 9.46° semiapex-angle cone-cylinder configuration (o =46.1°, M_=1.6,
Re = 6.6 % 10%) (experiment: Landrum, 1977).

good agreement, with the exception of the region close to the leeward plane of symmetry. By
studying the blow-up of the total-pressure-loss contours (fig. 30), it is seen that a slight flow
asymmetry starts at x,/L = 0.075 and spatially grows in the downstream direction. The total
Mach-number contours (fig. 31) show that the shocks on the primary vortices are asymmetric
and change sides as moving downstream, as shown by the results at the axial stations of 0.475
and 0.775. It is noticed that the flow asymmetry of this case is relatively weaker than that of
the 5° semiapex-angle cone-cylinder case because the relative incidence of the forebody of the
former case is lower than the latter.

5. Conclusions

The main goal of the present work is to predict asymmetric vortex-dominated flows around
slender bodies over a wide range of angles of attack, Mach numbers, and Reynolds numbers.
In this section, a summary of the findings of the numerical investigation is presented. First,
steady and unsteady solutions of supersonic asymmetric flows around a circular cone have
been obtained using the thin-layer Navier—Stokes equations along with the locally conical flow
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z1/L = 0.075 z1/L = 0.225

z1/L = 0.475 z1/L =0.775

Fig. 30. Blow-up of the total-pressure-loss contours on 9.46° semiapex-angle cone~-cylinder configuration (a = 46.1°,
M. =1.6. Re=6.6x10°).

assumption. The results have shown that the onset of flow asymmetry occurs when the relative
incidence of cones exceeds certain critical values. At these critical values of relative incidence,
asymmetric flow develops, irrespective of the sources of disturbance. Two types of flow
disturbances of short duration are used to demonstrate that the asymmetric solution is unique
and that the mechanism leads to flow asymmetry due to instability of the saddle point, even
without the presence of any permanent disturbance. It has also been shown that as the Mach
number increases, vortex flow asymmetry becomes weaker. In the high angle-of-attack regime,
unsteady asymmetric flow with periodic vortex shedding has been uniquely captured.
Second, asymmetric supersonic three-dimensional flow problems have been solved using
the thin-layer Navier-Stokes equations. Steady and unsteady flow solutions for asymmetric
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z,/L = 0475 /L =0.775
Fig. 31. Blow-up of the total-Mach-number contours on 9.46° semiapex-angle cone—cylinder configuration (a = 46.1°,
m, =1.6. Re = 6.6 X 10°).

supersonic flow over a circular cone and cone-cylinder configurations have been presented.
However, because there is a serious lack of steady and unsteady three-dimensional detailed
experimental measurements for supersonic asymmetric vortex flows, only surface-pressure
coefficients from one of the cases are validated with the experiment in the present study.

It is shown that the three-dimensional flow calculation does not produce the same solution
as that of the corresponding flow case under the locally conical assumption. The reason is that
for the viscous flow problem the transformed equation using the locally conical flow assump-
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tion is not self similar. However, most of the characteristics and physics of the asymmetric
flow can be simulated. The three-dimensional numerical results also show that the onset of
steady and unsteady asymmetric flow develops due to a transient sideslip disturbance of short
duration, provided that the body is at a certain critical range of Mach number, Reynolds
number, and angle of attack. The steady and unsteady asymmetric flow solutions have been
obtained without the need to impose any permanent type disturbance. As the free-stream
Reynolds number increases for flows around a cone, the flow asymmetry becomes strong and
changes sides in the downstream direction. For the high-Reynolds number flows, the spatially
asymmetric flow develops in a wavy manner. The mechanism of vortex shedding is qualita-
tively similar to the temporal asymmetric flow of the locally conical flow solution, where the
flow asymmetry develops in a periodic manner. As the angle of attack increases, the flow
asymmetry becomes stronger and unsteady. The unsteady asymmetric flow case shows
evidence of multiple small-scale vortices moving along the body and vortex shedding at each
section.

Adding a cylindrical afterbody to the conical forebody strengths the flow asymmetry in
comparison with that of the isolated cone. Finally, a comparison of the computed surface-
pressure coefficients with the experimental measurement for a cone—cylinder configuration is
given. The results show that a slight flow asymmetry starts close to the nose region and
spatially grows moving downstream. The shocks on the top of the primary vortices show
strong asymmetry and change sides in the downstream direction.

The next step for the research work is to study the control of three-dimensional asymmetric
supersonic flow using a passive-control method in the form of side-strakes and/or an
active-control method in the form of blowing or suction ports with various blowing rates and
orientations of the ports on the body surface.
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